INTRODUCTION TO

PROGRAMMING

Disclaimer: THIS SOFTWARE IS PROVIDED “AS IS” WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY OF ANY KIND. MICROCHIP DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY OR OTHER VIOLATION
OF RIGHTS. MICROCHIP AND ITS SUPPLIERS DO NOT WARRANT OR MAKE
ANY REPRESENTATIONS REGARDING THE ACCURACY, COMPLETENESS OR
RELIABILITY THE SOFTWARE ON THIS CD-ROM, INCLUDING THE INFORMA-
TION, TEXT, GRAPHICS, LINKS OR OTHER ITEMS CONTAINED WITHIN THE
MATERIALS. MICROCHIP MAY MAKE CHANGES TO THE SOFTWARE AT ANY
TIME WITHOUT NOTICE. MICROCHIP HAS NO OBLIGATION TO UPDATE THE
SOFTWARE.

Limitation of Liability: IN NO EVENT, INCLUDING, BUT NOT LIMITED TO NEG-
LIGENCE, SHALL MICROCHIP OR ITS SUPPLIERS BE LIABLE FOR ANY DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES,
INCLUDING, WITHOUT LIMITATION, BUSINESS INTERRUPTION OR LOSS OF
DATA OR PROFIT, ARISING OUT OF THE USE OR INABILITY TO USE, THIS
SOFTWARE, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

2

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

CONTENTS AT A GLANCE

Numbering Systems Assembly Language Programming
Data Types Interrupts

Programming Basics Fuzzy Logic

High-Level Languages and Event-Driven Programming
Structured Programming

THE BASIC LANGUAGE State Machines

THE C LANGUAGE

The best programming language is solder.”
Remark attributed to Steve Ciarcia.

Despite Steve Ciarcia’s assertion that applications are best designed with a hot piece of
metal and molten lead, microcontroller applications and most other modern electronics ap-
plications require you to write some software for them.

I have found that many people starting out in electronics are reluctant to include device
programming. I believe that the reasons for this reticence is caused by the approach with
which most people are taught programming and its disassociation with hardware. Most peo-
ple learn programming on PCs or workstations running Microsoft Windows, UNIX (Linux),
or other sophisticated operating systems. The student is generally told not to worry about
what kind of code is generated by the compiler and how it works in the system’s processor.

This appendix goes through the basics of programming, describing both High-Level Lan-
guages (HLLs) and assembly-language programming from the perspective of the processor. I
believe this makes it easier to visualize how an application is executing.

Along with this, I present interrupt handling and event-driven programming from a
processor-independent perspective to show how these techniques work together and sug-
gest how they can be used for microcontroller application programming.

Numbering Systems

In any kind of programming, you will be inundated with different numbering systems in
different formats. This can make understanding what is happening in your application dif-
ficult or the data that you are seeing is confusing. Having a good understanding of the dif-
ferent numbering systems and how data is converted between them is crucial to being able
to develop a working application and debugging one that isn’t.

Some of the information presented here is a repeat of what I described in “Introduction
to Electronics.” This section focuses on the information that I feel is important for under-
standing programming and interfacing to hardware devices. After going through both this
section and “Introduction to Electronics” section, you should have a very good under-
standing in the basic mathematics needed to develop microcontroller applications both
from the hardware and software perspectives.

INTRODUCTION TO PROGRAMMING

3

All of our lives, we have been taught to work in the Base 10. Base /0 means that num-
bers are represented by the 10 digits 0, 1, 2, 3,4, 5,6, 7, 8, and 9. A number greater than
nine needs to be written down and multiple digits are used with each digit representing the
power of 10 of the digit. For example, 123 is one hundreds (10 to the power 2), two tens
(10 to the power 1) and three ones (10 to the power 0). It could be written out as:

123 = (1 x 100) + (2 x 10) + (3 x 1)
[1 x (1091 + [2 x (1011 + (3 x (10971

Each digit is a number is given a position starting from the rightmost digit (working left
and numbered starting with 0). The digit position is actually the exponent. The base is mul-
tiplied by to get the value for the digit. When you learned Base-10 mathematics, each digit
was referred to as ones, tens, hundreds, etc., instead of using the exponent to base 10
(which these values actually are).

When you work with computers and want to change specific digits, you will find it
easier to work with numbers in terms of the base’s exponent, rather than the actual value.
I am making this point because numbers in a computer are represented as binary values
with each digit two times (in base) greater than the digit to its right.

In a computer, numbers are represented by a series of bits, where a bit (digit) can have
the value 0 or /. Binary values are represented as a series of ones or zeros with each digit
representing a power of two. Using this system, B’101100’ can be converted to decimal
using the binary exponent of each digit.

B*101100° = [1 x (2%)]1 + [0 X (29)] + (1 x (23] + [1 x (29)]
[0 x (21)] 4+ [0 x (2')] (Decimal)

32 + 8 + 4 (Decimal)

= 44 (Decimal)

For convenience, binary numbers are normally written as hexadecimal digits instead of
individual bits. Hexadecimal digits combine four bits into a single value. The numbers 0
to 9 and 4 to F are used to represent each hex digit. For multidigit hex numbers, each digit
is multiplied by 16 to the appropriate power:

0x0123 (hex) = [1 x (16%)] + [2 x (1611 + [3 x (16° 7] (Decimal)
= 256 + 32 + 3 (Decimal)
291 (Decimal)

When working with the different numbering systems in this book, I use three different
formats to let you know which numbering system is being used. When the number is en-
closed in single quotes (*) and prefixed by a B or prefixed by the string 050, then the num-
ber is a binary value. When 0x0 is in front of the number, then the number is in
hexadecimal format. If the number isn’t modified in any way, then it is decimal (Table 1).

These formats are similar to what are used when programming the PICmicro® MCU in
Microchip assembler. The only prefix that isn’t available in the PICmicro™ MCU’s as-
sembler is 0b0 for binary. This book is consistent with these formats to avoid confusion
over what is the actual value of a decimal string like /0/. Unless one of the prefixes is
specified, then the number is decimal.

As an aside, as you probably know, /ex is the prefix for six, not 16. The correct prefix for
16 is sex and in the early days of programming, base 16 numbers were known as sexadeci-
mal. When IBM released the System 360, all the documentation referred to base 16 num-

4

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 1 Number Format and Types Used in this Book

NUMBER FORMAT NUMBER TYPE
0bO. . . Binary
B...or0b0. .. Binary

0x0. .. Hexadecimal
No Prefix Decimal

bers as hexadecimal. This change was made because IBM felt that the System 360 would
be used by a large group of different users, some of whom would object to the word “sex”
as part of the basic programming operation of the computer. To be fair, I’'m sure many of
the early programmers snickered at the term sexadecimal, leading to the feeling that a rep-
utable computer company would not sell a machine which was programmed in sex.

Along with decimal, binary, and hex numbers, there are also a base-eight numbering
system known as octal. Octal numbers were popularized by DEC (in their VAX line of
mini-computers) and the C language. Octal numbers are awkward to work with because
each digit requires three bits. A byte cannot be represented evenly with octal numbers:
three digits are required for a byte. For the top digit, only two bits are available. Most as-
semblers and high-level languages support octal, but it should really be avoided simply
because it does not fit in very well with binary and hexadecimal.

To help make creating binary numbers with specific bits set easier, might I suggest shift-
ing the value “1” to the left by a specified number of bits instead of converting the bit num-
ber to hexadecimal or decimal values. This is done by using the “<<<<” (shift left) operator:

1 << Bit#

rather than trying to figure out which bit is which value. I find it easier to shift one up by the
bit digit number. Thus to create a byte constant where bit 4 is set, I could use the expression:

1 << 4

This is a very useful trick for PICmicro® MCU assembly-language programming,
where individual bits are set and reset for hardware control. Constants with specific bit set-
tings can be created much more quickly and accurately using this trick than creating a bi-
nary number from the bits you want to set and converting to hexadecimal or decimal.

To reset bits, the same formula can be used to reset bits in a byte, but the resulting bits
of the constant has to be inverted. The expression to do this is:

OxOFF ~ (1 << Bit#)
For example, if a byte with bit 3 reset were required, the expression would become:

OxOFF ~ (1 << 3) OxOFF ~ 8

= Ox0F7

Despite little tricks like this, you will still have to convert numbers from one base to an-
other as you are programming. To aid in this operation, I recommend that you buy a calcu-

INTRODUCTION TO PROGRAMMING

5

Figure 1

lator that has base conversion, as well as bitwise operations (AND, OR, XOR, and NOT),
capabilities. I have owned two HP-16C calculators (Fig. 1) for more than 15 years (one for
home and one for work) and they are two of the best investments I have ever made.

Some modern calculators with numbering system conversion (and bitwise operations)
are:

Texas Instruments: TI-85, TI-86
Sharp: EL-546L, EL-506L

As I was proofreading this book, I discovered that my HP-20S could convert decimal
values to hex and binary numbers. I only noticed the Hex, Bin, Dec, and Oct key selections
(along with A, B, C, D, E, and F) when my eyes were wandering when I was trying to
come up with a better way of saying something as [was writing this section. The number-
ing conversions tend to be an undocumented feature of the calculator and not included in
the instructions. For many of these calculators, there doesn’t seem to be any way to do bit-
wise operations (AND, OR, and XOR), which is unfortunate because these operations
would allow you to “simulate” the operations of the processor.

When writing application software for the PICmicro® MCU, you will have to be famil-
iar with how mathematical operations work. For addition and multiplication for integer
operations are quite simple to understand. When subtracting numbers, if a digit is greater
than the one above it, the number base is “borrowed” from the digit to the left of it.

To subtract 15 from 22, when subtracting the ones, five is greater than 2, and 10 is bor-
rowed from the tens:

22 10 + 12
—15 => —(10 + 5)
0+ 7

If the magnitude of the number subtracted is greater than the value it is subtracted from,
then a negative number results:

6

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

22
—25

=3

In a computer processor, there is no such thing as a negative number, instead when a
value is subtracted from a small value, the borrowed values results in a two’s complement
negative number. This can be shown in the previous example, by converting the two dec-
imal numbers into binary:

22 00010110
—-25 => —00011001

For the right-most digit (bit 0), / cannot be taken away from 0, so the digit to the left (bit 1)
is borrowed from. In this case, 2 is borrowed from bit 1 and subtracted from bit 1. The re-
sult of one subtracted from two is placed as the result.

For bit 3, the / in the number being subtracted has to borrow from bit 4, leaving bit 4
without having anything subtracted from it. Because the higher bits are all zero, this is not
possible, so the bits are checked to the end of the byte (bit 7) until a bit is found to bor-
row from. In most computers (like the PICmicro® MCU), if no other bits are available
to be borrowed from, the hardware behaves as if the first bit that is larger than the most-
significant bit of the byte is set. So, in actuality, the subtraction is:

1 00010110 1 00010110
—0 00011001 => — 0 00011001
11111101

The value B11111101" is the two’s complement representation of —3. This value, when
added to a positive value or another two’s complement negative number, will give a valid result.

For example, when —3 is added to 5, the result is 2. Using the two’s complement repre-
sentation of —3, this can be shown with binary numbers:

-3 11111101
+5 => + 00000101
2 1 00000010

Like the virtual ninth bit made available for the borrow, the ninth bit produced is ig-
nored (or used as the carry in the processor). With the ninth bit ignored, the result is
B<00000010’ or 2 (Decimal).

Two’s complement negative numbers can be generated from positive numbers using the
formula:

Two’s complement negative = (Positive » OxOFF) + 1
for —3, this formula can be used to generated the bit pattern:

-3

(3 ~ OxO0FF) + 1

(B00000011° ~ B°11111111) + 1
= B°I11111100" + 1

B°11111101"

which is the value calculated previously.

INTRODUCTION TO PROGRAMMING

7

With two’s complement negative numbers, the most-significant bit (bit 7 in a byte) is
often referred to as the sign bit. If the sign bit is set, the number is negative. If it is reset,
the number is positive. The remaining seven bits are the number’s magnitude. Two’s com-
plement bytes can be in the range of —128 to +127.

Now that I’ve shown that computer processors can handle positive and negative two’s
complement numbers, I have to point out that most processors (including the PICmicro®
MCU’s) cannot handle negative numbers “natively” (or without any special instructions or
software). Two’s complement negative numbers are a representation of a negative num-
ber—they are not actually “negative numbers” to the processor. The difference is subtle,
but important. The computer processor only works with bit patterns.

Another popular numbering system is the Binary Coded Decimal (BCD) format. In this
numbering system, each base-10 digit of a number is represented as a nybble. Using BCD,
one byte can represent the decimal numbers 00 to 99. BCD is quite popular for people
working with “mainframe” processors, where an essentially unlimited memory is available
and processor support is built in to handle the numbers natively. The PICmicro® MCU, like
most other small microcontrollers, does not have this capability built into the processor and
the limited memory makes this format not recommended for use in applications.

Representing a number in BCD is very straightforward. For example, the number 23
decimal is simply stored in a byte as 0x023. As noted, this means that 100 numbers can be
represented in a byte. Compared to the possible 256 numbers using all eight bits of a byte
without restriction, BCD cannot represent 60% of the values that binary numbers can. For
larger numbers, this inefficiency becomes even more acute. For example, two bytes
(which have four nybbles) can represent the 10,000 BCD values (0000 to 9999), where the
two bytes could represent 65,536 values if the data is stored as straight binary. In the two
byte case, the efficiency of BCD in representing all possible values has dropped to just
over 15% compared to binary. For a limited-memory device like the PICmicro®™ MCU,
this can be a serious problem.

Handling BCD numbers can be very difficult as well. Although in a later section of this
appendix, I show how a two-bit BCD addition can be processed reasonably easily, I feel
this effort should not be expended at all. Although addition is quite simple, subtraction is
more complex (especially with handling negative numbers). Additional complexity comes
into place if more than two digits per number are used or if multiplication or division op-
erations are required on the BCD numbers.

In this book, instead of looking toward BCD data processing, I want to point you toward
working only with bytes and use the binary-to-decimal conversion routines provided to
handle input and display decimal values in your applications.

Data Types

Computer processors are really designed to manipulate “data.” Data can be a flag, a sen-
sor value, a name, or even your driver’s license number. For each kind of data, different
data formats, known as types, are optimal in terms of data-storage requirements. Before
starting any computer code application, you should understand the types of data that are
used in the application and how they will be saved.

The most basic unit of data is the bit. A bif is a single two-state memory cell. Two state
means that a bit can either be on or off, yes or no, high or low, or any other pair of oppo-

8 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

site states that you can think of. The two-state memory bit is often referred to as a binary
memory bit. The two-state memory bit is the basis for all computer memories and is com-
bined into larger groups of data.

To make binary data easier to work with, every four bits are combined and written as a
single character. These four bits are sometimes being referred to as a nybble. The nybble
uses the characters 0 to 9 and A4 to F to represent the 16 different possible states stored in
the four bits. Table 2 shows the characters represented for each of the different bit states.

Normally, nybbles are written as part of a hexadecimal (hex) number. For example, the
eight bits:

0b011000110
could be written in the nybble/hex format as:
0x0C6

In this book (and most others), the hex/nybble format is the preferred method of listing
binary data.
From this table of values, it is useful to note that the first number in any binary sequence

TABLE 2 Binary Number to Hexadecimal Digit Table

BITS NYBBLE CHARACTER
(3-0)

0000 “0”
0001 “1”
0010 “2”
0011 “3”
0100 “4”
0101 “5”
0110 “6”
0111 “7”
1000 “8”
1001 “9”
1010 “A”
1011 “B”
1100 “C”
1101 “D”
1110 ‘B
1111 “F”

INTRODUCTION TO PROGRAMMING

9

is always zero. This makes electrical engineers and computer scientists different animals
from the rest of humanity. Whereas most people think the first number is /, we tend to
think of it as 0 because that is the first valid state in a binary data sequence.

Eight bits are combined to form a byte, the basic unit of storage in most computer sys-
tems. The eight bits can store up to 256 (two to the power eight) different values. These
values can either be numeric or characters.

Numeric values can be positive integers in the range of 0 to 255 (which is 0b011111111
or 0x0FF) or positive and negative integers in the range of —128 to +127.

When a byte is used for positive and negative values, the most significant bit (known as
bit 7) is used as the sign bit. The remaining seven bits are the magnitude bits.

As an aside, bits in a byte (or other data type) are referred to by the power of two they
bring to the number. For example, bit 0 is the /s bit, bit 1 is the 2s bit, etc. (Table 3).

From this table, you should be able to see how the bits are combined to form a byte. For
this example (0x0C6), to make up the number, the bits 1, 2, 5, and 6 of the byte are set.

Negative values are normally stored in two’s complement format. To generate a two’s
complement negative number, the positive value is NOTted (inverted or complemented)
and incremented.

For example, to calculate the hex value —47, the following process is used:

—47 = NOT (47) + 1
= NOT (0b000101111) + 1
= 0b011010000 + 1
= 0b011010001
= 0x0D1

The number NOT operation is the same as XORing the number with 0x0FF (as shown
previously).

The advantage of using two’s complement format is that it is automatically produced
when a number is subtracted from a smaller value. Also, it can be added to a positive or neg-
ative two’s complement number and the result will be correct (if it is positive or negative).

TABLE 3 Bit to Power of Two’s for Bit to Hex Value Cross-Reference

BIT TWO’S POWER OF BIT “HEX” VALUE
0 1 0x001
1 2 0x002
2 4 0x004
3 8 0x008
4 16 0x010
5 32 0x020
6 64 0x040
7 128 0x080

10

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

For larger pieces of data, bytes are normally “concatenated” together to form the new
data type. As I go through the book, I will explain that I prefer working with two bytes to
make a number that is 16 bits in size. Sixteen-bit numbers have a greater range of two’s
complement values (from —32,768 to +32,677) than a single eight-bit byte that has the
numeric range —128 to +127.

Four bytes (32 bits) can be combined to provide even larger data values and is very com-
mon for PCs and workstations (although as I write this, 64 bits is becoming the norm).

Fractional or “real” data values can also be represented with binary memory. To store
real data values, a format that is very analogous to the scientific notation you learned in
high school, is used. This type of data could also be known as floating point or real.

For the microprocessor used in your PC, floating-point data is stored in IEEE Standard
754 format, which requires four or eight bits to store a floating-point number. The IEEE
754 double precision floating-point number is defined as:

s mmmm X 2€-Pias

where s is the sign of the number, mmmm is known as the mantissa or precision of the
value, e is the two’s complement exponent that denotes the order of magnitude of the man-
tissa. The exponent has a bias value subtracted from it that is used to compensate for the
number of mantissa bits in the number.

This is probably very confusing, so let’s look at an actual example.

The number 6.5 could be represented as:

6.5 x (10%)
or without the decimal point as:
65 x (1071

In the computer itself, these values would be represented as binary values instead of
base 10. 6.5 could be represented as:

110.1 x (29)
or without the decimal point as:
1101 x (271

To eliminate the decimal point in the data, I simply shift the mantissa to the left (and
decrement the exponent) until the mantissa is entirely positive.

I chose 6.5 because the binary value and fraction are relatively easy to understand. This
conversion is nontrivial for many other examples (such as 1,022.73).

The double precision data format is shown in Table 4. Before the value can be stored,
the exponent has to be calculated with respect to the bias value. For the double precision
numbers, this value is 1023. To find the correct exponent, the formula:

Required exponent = Saved exponent — Bias value

INTRODUCTION TO PROGRAMMING 11

TABLE 4 IEEE 745 Double Precision Floating Point

Data Format

BITS PURPOSE
63 Sign Bit
62-52 Exponent
51-0 Mantissa

-
which, in this case, is:
-1 = Saved exponent — 1023

Moving the 1023 to the other side of the equation, saved exponent is 1022 (0x03FE).
This data is then stored as the following eight bytes (16 nybbles):

0x03FE000000000000D

From this example, you should come to the conclusion that floating-point numbers are
awfully hard to work with and can use a lot of memory (both in terms of storage as well as
processing routines). Small eight-bit processors, like the one in the PICmicro® MCU, sim-
ply cannot process floating-point data efficiently. For these reasons, I don’t present any
applications that use floating-point numbers. Instead I present methods of converting bi-
nary data in such a way that floating-point numbers, like this, are completely avoided.

If you insist on working with floating-point numbers in the PICmicro® MCU, I suggest
that you only work with high-level languages that have a floating-point data type sup-
ported as part of the language and library routines for processing the floating-point data
built in. Life is too short to be playing around with floating-point numbers in an eight-bit
processor programmed in assembler.

Bytes of characters can be used together to store character strings. These strings can be
names, messages, lists, or whatever human-readable information that you require to save.
This data is normally stored in such a way as to make it easily readable in a simulator or
emulator display.

To simplify my applications, I save all my string data in ASCIIZ format. This is a string
of bytes that are ended by the Null (0x000) character. When processing these strings, |
simply read through them to the first 0x000. Lists of ASCIIZ strings can be put together with
the end of the list being indicated by a final Null character after the last ASCIIZ string.

ASCIIZ strings are often simpler to work with than character strings with explicit
lengths. This is especially true when creating string data for use in the source code.
Changes in an ASCIIZ string do not require any other changes (so long as the ending Null
character isn’t lost). Other types of strings will require that the length indicators will have
to be updated after the string. This is something that, historically, I’'m not good at remem-
bering to do. By using an ASCIIZ string, I have eliminated the need to remember to update
the string length all together.

Data types can also be extended to include multiple data types built into a single “struc-
ture.” For example, your Social Security record probably looks something like the struc-
ture shown in Table 5.

12

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 5 Example Data Structure

SOCIALSECURITY_STRUCTURE

Bit32 Number

ASCIIZ “Your Name”
ASCIIZ “Your Address”
Float Income_1999

Float Tax_1999
-

Structures are useful in database programs and other applications that process large
amounts of data. Structures are not very useful in microcontroller applications that do not
typically process much data and do not have much memory to do it with.

This section throws a lot of information at you, with a number of various data types. I
did this to give you an idea of what is possible in a computer application. All of these data
types are used in a variety of systems that you interact with on a daily basis.

In microcontrollers, which have limited program memory and data memory, fancy and ex-
tensive data types are inappropriate. Throughout this book, only the simplest of the data types
are presented. I suggest that you follow this example in your own application development.

This might require a mind shift on your part if you are already an experienced pro-
grammer, but keeping to the simplest data types possible will make learning to use the
PICmicro®™ MCU easier and will make your application development easier as well.

Programming Basics

Many people have learned how to program in a variety of different ways. I, personally,
first was taught on an assembly-language simulator using punch cards in high school. Like
many introductory courses, the teacher spent the class trying to explain how programming
was done while showing how the concepts are implemented on the training tool. This
made it very hard for the students who are trying to learn two new concepts (programming
and working with the computer) at the same time.

The basic programming concepts are very simple. In fact, [would say that there are only
four of them. Once you understand these basics, you can then begin to use them in high-
level languages followed by assembly-language programming. In this section, before de-
scribing high-level languages, I want to introduce these four concepts as well as two
additional concepts that are applied to virtually all programming environments.

Before getting into the four programming concepts, what is programming?

As best | can define it:

Programming is the process of developing a series of symbols that will be converted, by a
compiler or assembler, into a set of instructions for a computer processor.

I use this definition because it can be used to illustrate the steps used to develop an ap-
plication. When you are programming, you are developing a dialog that is meaningless,

INTRODUCTION TO PROGRAMMING

13

except in the context to which it is being used. This dialog is then treated as a series of text
strings that are meaningless, except as input to develop instructions that will run on the fi-
nal processor. The final step is the execution of the instructions without regard as to what
the final application is doing.

From this perspective, programming is writing a text file for a computer application that
will convert it into a format that will be used to control another computer. The second
computer simply executes the instructions without any regard for what the programmer
expects that it should be doing.

As you start programming, you are going to go through some extremely frustrating
times. I’ve been programming for more than 20 years and I still get frustrated and angry
when something doesn’t work as I expect it to. The only thing all this experience has given
me is that I have nothing and nobody to be angry with except myself.

When you try to compile or assemble your first PICmicro™ MCU programs, chances are
that the PC running MPLAB will output syntax errors. The error messages it will spit out
at you probably won’t make any sense and the lines that the errors point to will look per-
fect to you. The important thing to remember is: keep calm and try to develop different
techniques to find the problems. This book explains many techniques that I use to find
problems and pitfalls I’ve had along the way. But it still won’t be easy.

Probably more frustrating will be the problems you encounter when the application source
code compiles and assembles cleanly (without problems), but the application doesn’t
work. Like the source code compiler/assembler, the PICmicro®™ MCU processor is only
executing what is has been given.

In university, we used to have the joke that went like:

First Student: How’s your computer science project going?
Second Student: It works exactly according to how I wrote it.
First Student: So you re saying that it doesn’t work at all.

It is a hard lesson to learn, but you are really the weakest link in the application-
development process. It’s easy to blame a problem on MPLAB, the particular PICmicro®
MCU that you are using, or unusually intense sun spots, but when it comes right down to
it (999 times out of 1,000), you are the source of the problem.

Once you can accept that the problem is of your own doing; you should be able to
calmly work through the problem and find its cause.

The four basic concepts that you must understand to successfully develop your own
applications are:

1 Array variables

2 Data assignment

3 Mathematical operators
4 Conditional execution

Once you understand these four concepts, the work in learning new programming lan-
guages and environments (processors) will be greatly simplified and you will become pro-
ductive with them much faster.

Array variables probably is an overly complicated way to describe memory locations that
are used to store application parameters, but it does explain the concept very well. In all com-
puters, memory is arranged in an addressed block of bytes that can be read from or written to.

A visual model is often used is a set of cubbies into which sorted mail is stored. In the

14

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

Rows
\l/ O | ByteO Byte 1 Byte 2 Byte 3
1 Byte 4 Byte 5 Byte 6 Byte 7
2 Byte 8 Byte 9 Byte 10 Byte 11
3 Byte 12 | Byte 13 Byte 14 Byte 15
Figure 2 Memory cubby
Cols -> (0] 1 2 3 model

computer memory model, each cubby, which has its own unique address, is a byte and the
contents can be changed. This changeable aspect of these cubbies is where the name vari-
able comes from.

In Fig. 2, the four-by-four array of cubbies have been given addresses based on the row
and column that are in. The address is defined by the formula:

Address = (Row X 4) + Column

Each of the four rows and columns can be addressed using two bits. Two bits have four
different states, which is the number of rows and columns in the block of cubbies. This is
exactly how all memory is addressed in your PC.

To keep with the computer analogy, I have created the address not using the formula
above, but by combining the two row bits as the most-significant two bits of the address
and making the columns being the least-significant two bits of the address. These four bits
(a nybble) produce an address that is equivalent to the result of this formula. In a computer
memory, data can be read from or stored in a memory location at a specific address or us-
ing a computed address, similar to this formula.

In most computers, the size of each memory address is one byte (eight bits) and is said
to be eight bits wide. If the processor is designed to read or write (usually combined into
the term access) eight bits at a time, then it is described as an eight-bit processor.

As shown earlier in the book, the PICmicro™ MCU instructions are larger than eight
bits, but can only be accessed eight bits at a time by the processor. Even though the in-
structions are larger than eight bits, the processor is still called an eight-bit processor.

The data in the memory locations can be accessed one of two ways. Direct memory ac-

Rows
| =T
Vv 0 i | j Byte 2 k
__________| __________ p
g I nan 1 nn 1 nyn
1 5 e ; Ipegh |
R - — - - - = = = = = = = e = = = = =
] I I
2 lloll I nn | "M'l I llyll
______ I —————
1
3 e "e" Byte 14 Byte 15
: Figure 3 Variables in
Cols -> o 1 2 3 cubbies

INTRODUCTION TO PROGRAMMING

15

cess uses a known address for the variable. This address is calculated when the application
code is compiled or assembled and cannot be changed during the program’s execution.

The second type of memory addressing is to algorithmically produce the memory ad-
dress to access during program execution. This allows variables of arbitrary sizes to be
created. The general term for data stored this way is array variables.

Variables and array variables can be stored in the same memory array. Figure 3 shows
how the variables i, j, and k can co-exist with the ASCII string “Hello Myke.” This ASCII
string is actually an array variable.

In this example, i, j, and k are placed in byte locations at addresses 0, 1, and 3, re-
spectively. The ASCII string is stored in memory locations 0x004 through 0x00C
(decimal 12).

The starting address of the ASCII string is known as the array offset. To access a spe-
cific element in the string (such as the second e), the address is generated using the for-
mula:

Address = 0ffset + Element

For the second e, which is the tenth element of the “Hello Myke” string, the calculation
would be:

Address Offset + Element
4 + 9

= 12

Elements in arrays are normally zero based and are pointed to by index registers (which
is why the tenth element has the value of 9). Zero based means that the first element in the
array is given the element number zero. This makes the address calculation for array ad-
dresses much simpler.

The index register is a hardware register that can drive an arbitrary address for access-
ing an array element. In some processors, the index register can have the array offset sep-
arate from the element number (and combine them automatically when the access takes
place). In the PICmicro®™ MCU, you will have to combine the offset and element values
manually before they can be loaded into the index register to access an array variable’s el-
ement.

Along with being character strings, array variables can also be a collection of bytes that
can be arbitrarily accessed. For example, you might be recording the weights put on a se-
ries of scales (Fig. 4).

i

e s e el

Scale 0 Scale 1 Scale 2 Scale 3

Figure 4 Scale values stored as
5 Lbs 0 Lbs 10 Lbs 1Lb an array

16

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

'/ \\\
/ N
[
\ i
L .
I N PV
y Figure 5 Two-dimensional array
0,0) x —— around a pipe

An array of bytes can be set up in memory with the value stored for each scale. For ex-
ample, the first array variable (Scale 0) would have 5, the second (Scale 1) would have 0,
the third (Scale 2) would have /0, and the last one (Scale 3) would have /. Any one of
these elements can be accessed using the same code by simply calculating the address us-
ing the element number of the scale. Using the array allows an application to access indi-
vidual data points at random with no time or code penalty regarding which one was being
accessed.

Multidimensional array variables can also be used in applications. For example, if you
wanted to observe heat transfer from a pipe into the surrounding soil, you could create an
array that covers the area you are interested in (Fig. 5).

In this example, the two dimensions (x and y) can be used to keep track of which array
element is being accessed. To calculate the address of the desired element, the same for-
mula as presented previously is used:

Address = 0Offset + Element

But, in this case, the element number must be calculated using the x and y address of the
element. When I set up a two-dimensional arrays, I use a single-dimensional array that is
broken up into pieces as wide as the array width. Each piece corresponds to one row in the
array.

For the pipeline example in which a four-by-four array is used to measure the heat flow
(Fig. 5), an eight-by-eight array is shown), the memory array can be represented as shown
in Fig. 6.

Figure 6 is really a table that shows the array element for a specific x and y coordinate.
The actual element could be looked up from this table or calculated using the formula:

x 0123(0123[0123|0123 Figure 6 Tyo-

dimensional array
Element 0123 4567 89 AB CDEF memoryimplementation

INTRODUCTION TO PROGRAMMING

17

Address = 0Offset + Element
Offset + (y X x_width) + x

This can be expanded into three or more dimensions. For example, if we wanted to sim-
ulate heat transfer along the length of the pipe, we could call the length of the pipe the z di-
mension, with each unit along the length the location for an x/y array slice. The same
single-dimensional array in memory could be used, with each slice at an offset governed
by z, multiplied by the size of each slice.

To calculate an element address, in this case, the formula would be modified to:

Address = Offset + (z X x_width X y_height) + (y X x_width) + x

This method can be extended for as many dimensions as you require. Notice that the
memory required will increase geometrically for each dimension that you add.

Creating multidimensional arrays can be difficult and confusing in assembly language.
For this reason, I recommend that if more than two dimensions are required for an appli-
cation array, the code should be written in a high-level language, which will perform the
offset calculations for you.

If you have a two-dimensional array and you want to use assembly language for the
code, then I recommend that you make the array width equal to a power of two. This will
allow you to simply shift the y coordinate to the left the appropriate number of bits (which
can be expressed as the logarithm, base 2, of the width).

For an eight-by-eight array, the y coordinate would have to be shifted three (which is the
base-two logarithm of eight) bits to multiply it by the width of the array.

This can be expressed as:

Address = 0ffset + Element
= (Offset + (y X width) + x
= Offset + (y << 3) + x

When array elements are accessed, the conventional (C) way of writing them is in the
format:

Variable[Index 1]

Where Variable is the start of the array and Index is the element being accessed.
Multidimensional arrays access can be represented using the C data format:

Variable[x_Index 1[y_Index]

In the compiler, the x_Index and y_Index parameters will be combined to form the ac-
tual element value.

Arrays must be placed in consecutive memory positions (known as contiguous memory)
for most processors (including the PICmicro®™ MCU). If an array is broken up (placed in
noncontiguous memory), a much more complex algorithm than what has been shown here
is needed to access the array variable data. Although this can be done, I recommend that
only contiguous memory should be used to avoid any potential problems or unneeded
complexities in the code.

18

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

So far, when describing array variables, I have only been mentioning the memory word
size (a byte for the examples here and the PICmicro® MCU). Multiples of the word size
can be combined to produce different data types. In many of the experiments, projects, and
tools presented in this book, I will use 16- and 32-bit data types (although 32-bit data types
are much less common).

To create these data types, bytes are concatenated together. Thus, to produce a 32-bit
variable, four consecutive bytes are used to produce the 32-bit data type.

Figure 7 shows the variables i and & as eight-bit data types, j as a 16-bit variable, and the
“Hello Myke” ASCII string array stored in memory to show how the different data types
can co-exist in the same memory space.

In most languages, variables are declared before they are used. Declaration statements
are used to notify the compiler/assembler that space is needed for the variable and, op-
tionally, the variable is set to an initial value.

Variables that are not declared are known as dynamic variables and are normally only
available in interpreters, instead of full compilers or assemblers. To implement dynamic
variables, the system (which could be the code produced by the compiler for running in a
microcontroller must maintain the memory resource, allocating and freeing memory as re-
quired by the application.

This capability can take a lot of system resources and is not what you would expect in a
small microcontroller like the PICmicro®™ MCU. In fact, I would recommend staying away
from application-development tools that provide this capability because chances are that
you will have problems with the software running out of variable memory and crashing or
running erroneously because the requested variables could not be made available.

I realize that I have gone on a lot about variables. Much of the information I have pre-
sented here is for completeness and will not be required for PICmicro® MCU application
programming. I can summarize what you have to know for variables in PICmicro® MCU
programming with the three points:

1 Variable memory is stored as an array of bytes.
2 Bytes can be combined to make larger variables or different variable types.
3 Variable arrays are best created using a contiguous portion of the total variable memory.

Assignments are data movements within the computer. Normally, they are written in the
familiar equation format:

Destination = Source

Rows

l
v

Figure 7 16-bit jin two
Cols -> 0] 1 2 3 cubbies

INTRODUCTION TO PROGRAMMING 19

Notice that the Destination (which can also be referred to as the result) is on the left side
of the equation. I tend to think of the assignment as:

Destination <- Source

With the arrow replacing the equals sign to indicate in which direction data is flowing.

The Source can be a constant value, a register, a variable, an array element, or a mathe-
matical expression. The Destination can only be a register, a variable, or an array element.
It should be obvious that the Destination cannot be a constant.

Previously, I described a variable and an array element. A register is a byte location that
is available to the processor to pass hardware information back and forth. An example of
a register would be an I/O port. By writing to the port, data is output to peripheral devices.
Reading from the I/O port, the state of a peripheral device is returned.

The PICmicro® MCU has no explicit memory locations. instead registers and memory
are in the same address spaces. To differentiate between them, memory bytes are known
as file registers. This can be confusing for new users. If you have read the previous de-
scriptions of the PICmicro® MCU architecture, you could be wondering where memory is
located in the PICmicro® MCU.

With the concepts explained so far, a computer is only able to load from and save data
to memory and registers. To make the device more useful, it must be able to carry out some
kind of mathematical operations.

As I was writing this, | was reminded of Arthur C. Clarke’s short story Into the Comet
in which the computer on a deep-space mission loses the ability to do mathematical calcu-
lations (but can still retrieve information accurately). Using this capability, the crew is able
to calculate a return orbit back to Earth using abacuses.

Hopefully, you realize that this is impossible because for a computer to retrieve infor-
mation and assign it as output, it must be able to calculate memory addresses from which
to access it from. This calculator, known as the Arithmetic Logic Unit (ALU) of a com-
puter, not only provides the ability to calculate addresses in the computer’s memory, but
also to arithmetically process data as part of the application’s execution.

When creating computer applications, you can assume that the computer can do basic
arithmetic operations on numeric data. The basic operations are shown in Tables 6 and 7
might also be available, but in small processors (like most of the PICmicro® MCUs) these
functions usually have to be created using a series of programmed functions.

The book explains how the multiplication, division, and modulus (which returns the “re-
mainder” from a division operation) operations can be developed for the PICmicro® MCU.

Normally, these functions only work on integers (whole positive and negative numbers)
and not real numbers. Some processors (generally PCs, workstations, and servers) can

TABLE 6 Basic Integer Mathematical Operations used in Programming

SYMBOL FUNCTION

Addition

Subtraction/Negation

20 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 7 Advanced Integer Mathematical Operations used

in Programming

SYMBOL FUNCTION
* Multiplication
/ Division
% Modulus
I EEEEEEEEEE———————

work with these numbers “natively,” but most (including the PICmicro® MCU) must cre-
ate software routines to handle them. These routines are normally provided as libraries to
the executing applications.

Along with the basic arithmetic operations, logarithmic and trigonometric operations
are often available in high-level languages and some processors (Table 8).

For these operations, real numbers are normally required. In some computers (such as
the Parallax Basic Stamp), the trigonometric functions are provided for a circle radius 127.
The trigonometric values returned are then in the range of 0 to 127, instead of 0 to 1, as you
are probably most familiar with. For the circle of radius 127, notice that two’s complement
negative values can be returned for negative sine and cosine values.

Along with arithmetic functions, processors also include “bitwise” operations to allow
the processor to manipulate individual data bits. These operations (Table 9) are always
built into computer processors.

The last type of operators are known as logical operators and is used to compare values
and execute according to the results. Logical operators only work on single true or false
values. These frue/false values are used to determine whether or not a change in condi-
tional execution is made. The typical logical operations, using C formatting for the first
six, are shown in Table 10.

TABLE 8 Floating Point Mathematical Operations used in Programming

ABS - Return the Absolute (Positive) value of a number

INT - Return the data that is greater than or equal to One
FRAC - Return only the data that is less than Zero

SIN - Return the trigonometric “Sine” of an angle

COSs - Return the trigonometric “Cosine” of an angle

ARCSIN - Return the trigonometric “Sine” of a value

ARCCOS - Return the trigonometric “Cosine” of a value

EXP - Return the value of an exponent to some base (usually 2)
LOG - Return the value of a Logarithm to some base (usually 2)

INTRODUCTION TO PROGRAMMING

21

TABLE 9 Bit Operations used in Programming

& - AND two numbers together (return a “1” for a bit in a byte if the
corresponding bits of both inputs are set to “1”)

| - OR two numbers together (return a “1” for a bit in a byte if one or both
of the corresponding bits in the inputs are set to “1”)

R - XOR two numbers together (return a “1” for a bit in a byte in only one
bit corresponding bit is set to “1” in the two inputs)

! - NOT the byte (“complement” or “invert” each bit. This operation is the
same as XORing the byte with 0xOFF to change the state of each bit
to its complement)

<< - Shift the byte one bit to the left

>> - Shift the byte one bit to the right
__|

The results of these logical operations are normally not zero (/ or — /) for frue and 0 for
false. Applying a numeric value to the result allows them to be used like arithmetic or bit
values.

When using arithmetic functions, the assignment format is used with the source now re-
ferred to as an Expression. Expressions consist of the arithmetic and bitwise operations
listed previously.

TABLE 10 Logical Operations used in Programming

== - Compare two values for being equal and return “true” if they are

1= - Compare two values for being not equal and return “true” if they are
not equal to one another

> - Compare two values for the first (leftmost) being greater than the
other and return “true” if it is

>= - Compare two values for the first (leftmost) being greater than or
equal to the other and return “true” if it is

< - Compare two values for the first (leftmost) being less than the other
and return “true” if it is

<= - Compare two values for the first (leftmost) being less than or equal
to the other and return “true” if it is

NOT (“1”) - Complement the Logical value (if it is “true” then make it “false” and
visa-versa)

AND (“&&”) - Return “true” if two logical values are both “true”

OR (“II”) - Return “true” if either one of two logical values is “true”

XOR - Return “true” if only one of two logical values is “true”

22

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

For example, the assignment with expression (usually known as an assignment state-
ment) takes the form:

A=B+C

Where variable 4 is assigned the sum of B and C.

Assignment statements can become quite complex. For example, going back to the two-
dimensional pipe heat-transfer example, to calculate a new value for one of the array ele-
ments, the average of the surrounding elements is calculated and assigned to it. This could
be calculated using the assignment statement:

element(x, y) = (element(x — 1, y) + element(x — 1, y — 1) +
element(x, y — 1) + element(x + 1, y — 1) + element(x + 1, y) +
element(x + 1, y + 1) + element(x, y + 1) + element(x — 1, y + 1)) / 8

In this example, the summation of the eight surrounding elements takes place before the
divide by eight to get the average. The summation is enclosed by brackets (also known as
parenthesis) to indicate to the compiler/assembler that it has to be computed before the di-
vision can occur.

If the brackets are left out:

element(x, y) = element(x — 1, y) + element(x — 1, y — 1) +
element(x, vy — 1) + element(x + 1, y — 1) + element(x + 1, y) +
element(x + 1, y + 1) + element(x, y + 1) + element(x — 1, y + 1) / 8

The computer will evaluate the expression according to its internal order of operations. In
most cases, multiplication and division are at a higher priority over addition and subtraction.

Thus, in the example, element(x, y) will be loaded with the sum of the seven surround-
ing elements plus one eighth of the last element.

To avoid problems like this, I always surround what I want to be the highest-priority op-
erations with parenthesis to explicitly force the compiler/assembler to evaluate the por-
tions of the expression in the lowest level parenthesis first. I find that doing this also makes
the statements easier to read (either by others or by yourself when you are looking at the
code several years later).

Following what I’ve presented so far, you have enough information to understand how
to program a processor that has memory that can be read from and written to, as well as the
contents arithmetically modified. Except for one important piece, this is all there is to the
programming basics.

The missing piece is the ability to change the execution path of the application code. This
can be based on the status of some parameter or done unconditionally. In traditional high-
level programming languages, conditional changes are accomplished by the if statement. I
use this convention when explaining how execution change is implemented in programming.

For nonconditional changes in execution, the goto Label statement is used. This state-
ment is used to load the processor’s program counter with a new address and start reading
instructions from there.

For example, a “loop” can be created in an application by executing a goto label state-
ment to a location in the code that is “above” the goto label:

INTRODUCTION TO PROGRAMMING

23

- Loop Initialization code
Looplabel: // “Loop” back Here
- Instructions executed inside the Loop

goto Looplabel // Execute Instructions inside Loop Again

The LoopLabel is a text string (known as a label) that is used as a destination for the
goto statement. The colon (.) at the end of the label is a common indicator to compilers and
assemblers that the text string is a label.

Although a physical address can be explicitly stated in virtually all programming envi-
ronments, | highly recommend that you let the compiler or assembler generate the ad-
dresses for you unless a specific hardware address is required. The only examples in the
PICmicro® MCU where addresses have to be explicitly specified are the reset address, the
interrupt vector, and the page boundaries. All these addresses are explained elsewhere in
the book as to how they relate to the PICmicro® MCU.

The goto statement by itself isn’t that useful (except for creating endless loops, as the
one shown) unless it is coupled with a conditional execution statement. Conditional
execution is code that is only executed if specific parameters are met. The if statement is
normally used with the gofo to provide “intelligence” to an application.

The conventional format of the if statement is:

If (Condition) then goto Label

where Condition is a logical mathematical operation that tests parameters to meet a spe-
cific condition.

For example, you can test two variables. If they are equal, then execution changes to a
new location.

If (A == B) then goto NewlLocation
- Instructions Executed if A is not equal to B

NewlLocation:

In this example code, if 4 does not equal B, then the Instructions Executed if A is not
equal B are executed. Otherwise, when 4 does equal B, then instructions are skipped over.

The if (Condition) then goto Label conditional execution statement is the primary
method used in all conditional execution statements in all general-purpose high-level lan-
guages. This might seem hard to believe, and if you have any experience with structured
programming, this doesn’t seem true. The next two sections show how the if (Condition)
then goto Label statement is used as the basis for structured conditional statements,
assembly-language conditional execution, and table jumps.

Understanding how to use the if (Condition) then goto Label statement will be one of the
hardest and most difficult things that you will have to master as you learn how to program.
This concept will take a bit of work to see it in action in PICmicro® MCU assembly-
language code, but as you work through applications and start to develop your own, see-
ing them will become second nature.

Although the first four concepts are basic to programming and I urge you to keep them

24

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

clear in you mind, two others will make programming easier and help you to understand
how the PICmicro™ MCU is operating.

Macros and subroutines are useful programming techniques. Both are designed to do
the same thing, eliminate the need for you to type in redundant code. Instead of repeatedly
entering in the same code, a subroutine or macro is created and then called or invoked, re-
spectively, each time access to it is required. From your point of view, both are very sim-
ilar, although there are some differences that you should be comfortable with.

When a subroutine’s call statement is encountered, the location affer the call statement is
saved (usually on the program counter stack) and execution jumps to the start of the subrou-
tine. When the subroutine is finished, the return statement/instruction is executed and execu-
tion returns to the saved address (the first instruction after the call). This is shown in Fig. 8.

When Subroutine is called, the main execution registers (known as the Context Regis-
ters) might be saved before the subroutine’s code executes (but after the call Subroutine
instruction is executed). In this case, after the subroutine has finished executing, but before
the Return statement is about to return execution to the caller, the context registers are be
restored. When the program resumes execution after the subroutine, the registers will be in
the same state as if the subroutine wasn’t executed at all. This context saving is not often
required in simple processors like the PICmicro® MCU, but for complex processors and
applications, it usually is.

Data passed to and from a subroutine from the calling code are known as parameters.
These parameters can be used to specify data for the subroutine to process, or information
needed by the caller. It is important that parameters are supplied at run time, which is in
contrast to macros, which execute the parameters at compile/assembly time. This is an im-
portant point and one that often trips up new programmers. The “Assembly-Language Pro-
gramming” section of this chapter describes parameters in more detail.

Macros are code that are inserted directly into the calling (or, in this case, “invoking”)
code, replacing the macro statement and inserting the executable code from within the
macro (Fig. 9).

Inserting the code directly into the invoking code, eliminates the need for the call and
return statements, which allows the code to execute slightly faster. As indicated, macros
are customized for the application during compile/assembly time, instead of at run time. In

Source Code .
Subroutine

Line 1 Code
Line 2 Code
Line 3 Code

Subroutine:

if (Condition) then goto Skip
Non Conditional Code

Skip
General Code

Return
calljjbr:tine//—/

Line 5 Code
Line 6 Code
Line 7 Code

Figure 8 Subroutine operation

INTRODUCTION TO PROGRAMMING

25

Source Code

Line 1 Code
Line 2 Code

Line 3 Code
Macro Declaration

Macro_Label macro

S First Statement
= Second Statement

endm

Macro_Label Parameg

Line 5 Code Figure 9 Macro
Line 6 Code
Line 7 Code invocation operation

many ways, this makes macros much more flexible and better able to add considerable
functionality to your applications.

Directives are the last concept presented in this section. Directives are instructions
passed from the software to the compiler or assembler to instruct how the operation is to
take place. The parameters passed via directives are the kind of processor model it should
create instructions for, the device configuration information and information used to cus-
tomize the application and macros.

When you first start programming (or first start programming a new device or using a
new language), directives will seem like “the straw that broke the camel’s back.” You end
up ignoring them and hoping the application will work without understanding them. Al-
though I can relate to this feeling (and have been there myself), when starting with a new
language, I urge you to take a look at the directives to at least have an idea of what kind of
operations and functions are made possible by them.

High-Level Languages
and Structured Programming

A high-level language is a specification for a series of natural language-like statements,
which are used to develop a computer program. As I go through assembly-language pro-
gramming, you’ll discover that many of the details of the concepts presented in the previ-
ous section are obscured by the individual processor instructions and the methods in which
they are used to carry out specific tasks. In high-level languages, these concepts are very
obvious and are easily seen built into the source code.

This section is really an extension to the previous one. It covers the four basic concepts
as how they relate to actual computer programs. Although this information is more spe-
cific than that given in the previous section, it is still pretty general. Actual high-level lan-
guages will implement the concepts presented here in different ways according to the
language and the implementation.

The basis for most high-level languages is the statement. A statement is usually in the
conventional formats shown in Table 11.

These statements are available in virtually all programming languages. Although the
syntax (format) of the different languages changes the formats slightly, these statement
types are available for your use.

A constant theme in most of the statements is the expression. An expression is another

26

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 11 List of Basic High Level Language Statements

destination = expression /I Assignment statement
goto Label /I Execution change statement
if (expression) then goto Label /I Conditional execution change

// statement

call subroutine (expression, . . .) // Subroutine call statement
___|

term for the arithmetic operation presented in the previous section. An expression com-
bines different functions together to produce a mathematical result.
For example, the expression:

A+ (B X ()

will add 4 to the product of B and C.
In the assignment statement, the expression is used to create the value to be stored into
the destination. So, for the assignment statement:

A = 32

The variable A4 is loaded with the decimal value 32. Although this is quite simple (and ob-
vious), the expression can become very complex and optionally use array variables as well:

AC471 =B + (CL321 * 67)

As I go through high-level languages, you are going to discover that many of the concepts
presented are recursive, meaning that they can be used within themselves. A good example
of this is for array variables, in which the index (selected element) is an expression itself.

Instead of hard coding the array indices, as shown in the previous assignment statement,
they can be arithmetically derived as:

AL37 + D1 =8B+ (CL22 + D1 *67)

Most operators in an expression have two parameters (inputs). For example, the addi-
tion operator requires two and is defined as:

sub_expression + sub_expression

where sub_expression can be a constant, variable, array variable, or another expression
(this is where the recursive property of programming comes in).

There are also single parameter (expression) operators, with the most common being
— (negate) and / (bitwise invert) and return a single value. Functions, which return a value,
can also require a single input parameter.

You are probably most familiar with the minus symbol (“—"") as a two-parameter sub-
traction operator, but when used with only one parameter, it returns the negative of its pa-
rameter to the expression. This means the unlikely expression:

INTRODUCTION TO PROGRAMMING

27

A+ -8B

is actually valid, It is literally adding the negative of B to 4. This statement can be simpli-
fied to:

A —B

Negation and subtraction have some special problems as they relate to the PICmicro®
MCU architecture that is carefully covered in this book.

Functions are subroutine calls that return a single value. Many high-level languages
have basic functions built into them, which use the format:

Return_Value Function_Name(Input_Parameter)

Creating and using functions are explained later in this section.

As I go through programming in more detail and specifics, I should explain how pro-
gramming constructs are defined. Normally, constructs are specific programming objects
specific to the language that are defined using formulas in the format shown in Table 12.

Using this convention, a simple arithmetic “expression” can be defined as:

expression := {—]!} Constant | Variable | Array_Variable[expression]
{+]—=1*|/]% expression }

Notice that within this expression definition, expression itself is part of the definition. This
is because the expression can be expanded using two input-parameter operations (+, —, *,/,
and % in this example) or using an array variable, which has an expression to define its index.

I use this format throughout this book to explain how operations work.

The goto Label statement carries out a nonconditional execution change. When it is
used with the conditional execution change statement, if (expression) then goto Label, a
variety of “structured programming” can be derived, which will make application pro-
gramming much easier.

TABLE 12 High Level Language Statement Construct Definition

Construct_Type := Label (Required Parameters {Optional_Operators | . . .}

Where:

Construct_Type - The programming object (or “construct”) being
defined.

= - Equate Symbol

Parameter/Label/Operators - Inputs/Labels/Variables/Constants used in building

the construct
{} - Parenthesis to indicate optional parameters
[- Indicate that one or another Parameter is used
- Indicate “And So On”

28

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

In high-level languages, the expression in the if statement is evaluated, but not saved.
The evaluated expression is used to determine whether or not the goto Label portion of the
statement is to be executed or skipped over. In most languages, if the expression is evalu-
ated to zero, then the goto Label is skipped. The expression evaluated to zero case can be
called false in many languages. If the expression is not zero (true), then the goto Label por-
tion of the statement is executed.

Thus, arithmetic only expressions can be used along with comparisons in most high-
level languages. For example:

if ((A + B) != 0) then goto Label
could be simplified to:
if (A + B) then goto Label

I am of a mixed mind whether or not to recommend programming like this. Although it
is quite efficient, it can be somewhat confusing for new programmers to understand. In this
book, I will always have a comparison in an if statement wherever possible.

Be sure that you use the correct comparison operator in your expression. In C, the com-
parison operator is == (two equals signs) instead of the expected one (which is an as-
signment statement). One of the biggest mistakes made by C programmers is that they
write the comparison statement:

if (A = B)
when the proper form is:
if (A == B)

In the if (4 = B) case, the variable A is assigned the value of B and executes the condi-
tional code if the contents of B are not equal to zero. This common mistake is very diffi-
cult for new programmers to find.

To minimize the opportunity of this error, many C programmers will only put the con-
stant values of a comparison on the left side of the comparison operator. So, instead of:

if (A ==17)
the if statement is written as:
it (7 == A)

If the second equals sign (=) is forgotten, then the compiler will return an error stating
that the language can’t assign a value to a constant. This error is detected before the appli-
cation begins executing, which makes it very simple to find and fix.

Structured programming is the term for conditional code that is based on, but doesn’t
use the if (expression) then goto Label and goto Label concepts. If you haven’t been ex-
posed to structured programming before, the idea of “gotoless” (to coin a word) program-
ming might seem quite radical and difficult to work with. But it actually makes application
development easier and less error prone.

INTRODUCTION TO PROGRAMMING

29

I have indicated that the structured programming constructions are based on the if (ex-
pression) then goto Label and goto Label constructs. As I go through the different struc-
tured programming constructs, I show how these two basic constructs are used to produce
them. To make this description clearer, I will refer to the expression evaluated for the
structured programming constructs to determine how to execute as the “condition.”

The most basic structured programming construct is the if/else/endif, which is used to
conditionally execute two different paths based on a set of conditions. The iffelse/endif
construct is written as:

if (condition)

-Code to Execute if “condition” is “true”
else

-Code to Execute if “condition” is “false”
endif

In this construct, if the condition is true then the code following the if statement is exe-
cuted to the else statement and the jumps to after the endif statement. If the condition is
false, the execution jumps to the instruction after the else statement and resumes execution
from there.

The if/else/endif construct is created using the if (expression) then goto Label and goto
Label basic constructs as:

if NOT(condition) then goto ifelselabel // “if” Statement
-Code to execute if “condition” is “true”
goto ifendlLabel // “else” Statement
ifelselabel: // “else” Statement

-Code to execute if “condition” is “false”
ifendLabel: // “endif” Statement

For this function, I have used the logical NOT function to complement (invert) the re-
sults of the evaluation of the condition expression. The logical NOT returns false when the
input parameter (condition, in this case) is true and visa-versa. Thus, the gofo Label at the
end of the statement only executes if the condition is false.

Also notice that the else statement is really just a label and a goto Label statement and
endif is just a label.

This simple implementation is true for most structured programming. Although struc-
tured programming simplifies the application from the programmer’s point of view, it
does not significantly increase the complexity of the code used in the application. This is
important for the PICmicro® MCU that has limited execution and variable register space.

The else statement is normally optional in the if/else/endif construct, allowing code to
be inserted that is only executed if the condition is true:

if (condition)
- Code to Execute if “condition” is “true”
endif

the if (condition) then goto Label/goto Label analog is:

30 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

if NOT(condition) then goto ifendlLabel // “if” Statement
- Code to execute if “condition” is “true”
ifendlLabel: // “endif” Statement

In most languages, you can put Null statements after the if or else. For example, if you
had code that only executed if a condition was not true, then the following code could be
written:

if (condition)
else

- Code to Execute if *“condition” is “false”
endif

I would recommend that you never use this code format in your application for two rea-
sons. First, the code is confusing to read and begs the question of where is the line is that
appears to be missing between “if”” and “else”. This code format uses what I call “negative
logic” and I recommend that you avoid using it in your application code because it makes
the application more difficult to read and understand.

The second reason to avoid using a null statement followed by an else in a if conditional
statement is that the compiler might insert extra instructions (which are unneeded to im-
plement it. The if (condition) then goto Label/goto Label model you expect to see is:

if (condition) then goto ifendLabel // “if” Statement

- Code to execute if “condition” is “false
ifendlLabel: // “endif” Statement

but, chances are you will get:

if NOT(condition) then goto ifelselabel // “if” Statement
goto ifendLabel // “else” Statement
ifelselabel: // “else” Statement

- Code to execute if “condition” is “false”
ifendlLabel: // “endif” Statement

which takes up a few extra instructions of program memory and a few extra cycles to ex-
ecute. This will lower the performance of your application in terms of total speed and size.
The if/else/endif constructs, like other structured programming constructs, can be
nested within other constructs. Nesting means that conditional statements are placed inside
of other conditional statements. For example:
if (condition_1)
if (condition_2)
- Code to Execute if both conditions are true
else
- Code Executes if “condition_1” is true/”condition_2” is false

endif
else

- Code to Execute if “condition_2” is false
endif

INTRODUCTION TO PROGRAMMING

31

Notice that I have indented the nested statements in this example. Indenting nested code
helps to make the different nesting levels more obvious and easier to follow through.

The if/else/endif construct will allow conditional execution of an application, but it can-
not loop or return to the top of the application. To perform this function, the while/wend
and do/until structured programming constructs are normally used. The while/wend con-
structs look like:

while (condition)
- Execute while “condition” is true

wend

This construct will repeat the code within it until the condition is no longer true. Many
applications use a flag for the while condition and change its state when it is time to exit
the loop. The if (condition) then goto Label/goto Label form of this construct is:

whilelooplLabel: // “while” Statement
if NOT(Condition) then goto whileendlLabel // *while” Statement

- Execute while “condition” is true
goto whilelooplabel // *“wend” Statement
whileendlabel: // *wend” Statement

In most microcontroller applications, execution has to continually loop around to exe-
cute the application. In this case, the condition used in the while statement can never be-
come false and the application loops forever.

This is known as an endless loop, which can be implemented with the while/wend con-
structs as:

while (1 == 1)
- Execute application code forever

wend

Ideally, the compiler that processes this source code will recognize that this is an end-
less loop and generate the code:

whilelooplabel: // “while” Statement
- Execute while “condition” is true

goto whilelooplabel // “wend” Statement

which saves a few instructions and cycles over continually testing the case that one is
equal to itself.

For the endless while loop, I use the condition that the code should execute while the ba-
sic truth that unity is always equal to itself is true. If this ever changes, then I think execu-
tion should stop. Other programmers will declare a constant zero using the label
Doomsday and then loop while NOT(Doomsday) to be funny. Of course, you can always
just put a / as the while condition and loop exactly the same way as these two examples.

Along with the while/wend looping constructs is the do/until. This construct is the in-
verse of the while/wend and only exits the loop when the condition becomes true.

32 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

do
- Execute until “condition” is true

until (Condition is True)
This can be modeled as:

dolLabel: // “do” Statement
- Execute until “condition” is true

if NOT(condition is True) then goto dolabel // “until” Statement

The advantage of this structured programming construct is that a test of the condition is
not done before the first execution of the loop code. Personally, I find this construct con-
fusing and difficult to think through because it requires logic that is negative to the if and
while constructs that execute based on a condition being true. As indicated, I always try to
avoid negative logic because it seems to take away from the readability of the application
source code.

Along with while/wend and do/until, the for/next structured programming construct can
be used to execute some code for a set number of times. The format of the for/next con-
structs in code is:

for Variable = Initial to Final {step = stepvalue}
- Code to execute while “Variable” does not equal “Final”

next

Variable is a counter that is set to the value of the /nitial expression and then incre-
mented each time through the loop until it equals the Final expression. The for/next con-
struct can be represented as:

Variable = Initial // “for” Statement
ifdef step // “for” Statement
StepValue = stepvalue // “for” Statement
else // “for” Statement
StepValue =1 // “for” Statement
endif // “for” Statement
forlooplLabel: // “for” Statement
if (Variable == Final) then goto forendLabel // “for” Statement

i

- Code to execute while “Variable” does not equal “Final”

Variable = Variable + StepValue // “Next” Statement
goto forlooplabel // “Next” Statement
forendLabel: // “Next” Statement

In this example, you will see the statement ifdef step, which I haven’t explained yet (and
will explain in greater detail in the book). Quickly, the ifdef step statement is a directive
that is processed during the compilation (and assembly) step and tests whether or not the
step parameter is present. If the parameter is present, then the stepvalue specified will be
added to Variable in each loop. If the step parameter is not present, then one will simply
be added to Variable in each loop.

Normally to execute a set number of times, the initial value is set to one and the final

INTRODUCTION TO PROGRAMMING

33

value is set to the total number of times through the loop. For example, to execute the code
within the for/next statements five times:

for i =1 to 5
- Code to execute five times

next

The for loop is very straightforward, although there is some opportunity for prob-
lems. First is the value specified for the step increment. Take care to avoid the oppor-
tunity to specify a value that will result in the loop will never being ended. An example
of this is:

for i = 1 to 4 step 2
- Code to execute twice

next

In the for/next loop, i will be 1, 3, 5, and so on, but never 2. This might seem obvious,
but I think everybody gets caught with this one, one time or another (especially if variables
are used for the initial and final counter values).

I do not recommend modifying the for counter from inside the loop. Although this is
possible in most high-level languages, writing to the counter could cause it to be given an
invalid value. Like the previous point to watch out for, you could end up in an endless loop
or exiting the loop before you want to.

The last structured language construct to describe is the switch. This construct is de-
signed for situations where an expression is going to be checked for multiple values. Prob-
ably the most obvious way to implement this is as a series of if statements like:

if (expression == Casel)
- Execute if expression is equal to “Casel”
else if (expression == Case?2)
Execute if expression is equal to “Case2”

else if (expression == (ase3)

else
- Execute if expression doesn’t equal any of the cases
endif
endif
endif

This method is useful for certain situations, but is somewhat clumsy (notice that the
number of endifs has to match the number of ifs in this code). As well, the expression has
to be evaluated repeated for each if case.

In terms of source code formatting, notice that for this application, the subsequent if
statements are not indented relative to the previous ones. Instead, in this form it is assumed

34 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

that the same expression is being repeated, which is best displayed as a repeating condition
that does not have its indentations changed.

A repeating condition is a good way of describing the switch statement, which has the
form:

switch(expression)

Casel:

- Execute if expression == (Casel
Case?:

- Execute if expression == (ase?
Case3:
else

- Execute if expression does not equal any of the cases

endswitch

This construct can be produced using the if (condition) then goto Label and goto Label
constructs as:

Temp = expression // “Switch” Statement
If (Temp == Casel) then goto switchCasellabel // “Casel” Statement
If (Temp == Case?2) then goto switchCaseZlabel // “Case2” Statement
If (Temp == Case3) then goto switchCase3label // “Case3” Statement
goto switchelselabel // “else” Statement
switchCasellabel: // “Casel” Statement
- Execute if expression == (Case 1

goto switchendLabel
switchCaseZlabel: // “Case2” Statement
- Execute if expression == (Case 2
goto switchendlLabel
switchCase2label: // “Case3” Statement

switchelselabel: // “else” Statement
- Execute if expression does not equal any of the cases

switchendLabel:

If the cases are in sequential order, then the code could be further enhanced by jumping
from an address table. An address table is a variable array that contains addresses that ex-
ecution can jump to or call instead of retesting each condition. For this example, the code
could be simplified (assuming that the cases are in sequential order) to:

Table[0 1 = switchCasellabel // “Casel” Statement
Table[1 1 = switchCase2label // “Case2” Statement
Table[2] = switchCase3Label // *“Case3” Statement

INTRODUCTION TO PROGRAMMING

35

Témp = expression // “Switch” Statement

if ((Temp < Casel) OR (Temp > Caseff)) then goto switchelselabel
goto Temp[Temp — Casel] // “Switch” Statement
switchCasellabel: // “Casel” Statement
- Execute if expression == (Case 1

goto switchendlLabel
switchCase2label: // “Case2” Statement
- Execute if expression == (Case 2
goto switchendLabel
switchCase2label: // “Case3” Statement

switchelselabel: // “else” Statement
- Execute if expression does not equal any of the cases

switchendlLabel:

Using the table jumps allows the code to be implicitly tested as part of finding the ad-
dress. The advantages of using the table of addresses are that the code required for the
switch table is vastly reduced. The time to access the code specific to different cases is the
same for all the different cases, no matter how large the number of cases.

The ability to jump to addresses from a table is an important feature in the PICmicro®
MCU and one that I will be explaining to you and exploiting in the experiments, projects,
and tools presented in this book.

In the switch examples, I have shown leaving the case conditionally executing code as
happening automatically when the next case statement or the else statement is encoun-
tered. This is not always true. In some languages (C, in particular) an explicit break state-
ment is used to jump out of the switch statement’s case. The programmer-defined break
gives additional control over how the switch statement executes.

The break statement is also often made available for the other structured constructs
listed. For example, the break statement could be used for exiting a while loop without ex-
ecuting the while condition test statement.

Personally, I do not like using break for anything other than the switch statement
because it is (forgive me for using this term) an “unstructured” approach to program
execution control. I prefer writing applications that only exit through the standard condi-
tion test statements, instead of forcing the code to execute in a specific manner.

Most modern high-level languages are procedural languages that have a method of de-
claring subroutines and functions that causes them to be isolated from the mainline and
each other. The biggest issue with regard to procedural languages is how to handle the
variables and parameters passed to them.

In a typical assembly-language program, variables are accessible from anywhere in the
code. Subroutines can have parameters passed to them or they can access them from com-
mon variables. This aspect of assembly-language programming can make the subroutines
hard to read and understand exactly how they work. Also, they can be difficult to reuse in
different applications.

I state this elsewhere in the book, but the goal of successful application software devel-

36

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

opment is to create routines that can be used in other applications. To do this, prior plan-
ning of the design of the routine must be made to avoid having application-specific infor-
mation hard coded into it.

The easiest way to create routines that can be used in other applications is to avoid ac-
cessing global variables from within them. Instead, following the rules for procedural lan-
guages presented here, will allow you to write high-level language and assembly-language
routines that can be transferred to other applications without modification.

Procedural routines are defined like:

subroutine Label(type parameter {, ... 1})
- Subroutine code

endsub
where the calling statement passes a number of parameters to the routine:
call Label(parameter {, ... })

The parameters are passed to the subroutine by copying in their values into temporary
variables. These variables can be read from and written to in the subroutine without af-
fecting the original variable values. A few points on this follow.

The first is on the different type of variables. So far in my description of software de-
velopment, I have only noted one category of variable, the types that are accessible
throughout the application software. Procedural high-level languages have two cate-
gories. First is the global variable, which is the standard variable that is accessible
throughout the application. The second type is the local or automatic variable that is
only available within a subroutine. Memory for the automatic variables are defined
when the subroutine starts executing and is freed up when the subroutine’s execution
has completed.

The memory used for automatic variables is usually taken from the application’s data
stack or heap. Both of these memory resources allow applications to quickly request
memory for temporary purposes and then return them when the application is done with
them.

To design your routines to be as “portable” to other applications as possible, they should
have minimal access to global variables. Instead, any application specific information
should be passed to the routine via the input parameters. Passing all the required informa-
tion to a subroutine as input parameters does use up more memory than using global vari-
ables. In fact, recursive subroutines can use an alarming amount of memory for creating
the automatic variables as execution moves through the called routines (this is another rea-
son to avoid recursion in the PICmicro® MCU).

Along with the passed parameters, variables specific to the routine can be declared
within the routine. These are automatic variables as well. The memory used by them will
automatically be returned to the data stack or heap when the routine is finished.

Sometimes when routines are called, the programmer wants data to be returned from the
calling routine. Two methods are normally used.

The first is the function type of subroutine. In this type of subroutine, a data value is
passed back to the caller. The routine takes the form:

INTRODUCTION TO PROGRAMMING

37

type function Label[type parameter {, ... }1]

- Function code

Label = expression // Save Return Value
endfunc

With the calling statement being part of an expression like:
A + (Label[parameter {, ...} 1 * 47)

Functions can be used to enhance a high-level language compiler. For example, if you
wanted to have a factorial function (which returns the factorial of a number), you could
write it as:

int function Factorial(int Number)
if (Number > 1)

Factorial = Number * Factorial(Number — 1)
else
Factorial = 1
endfunc

This recursive function will return the factorial of a given integer as the product of the
number times the factorial of the number less one. Using a function for the routine makes
it very easy to develop.

The second method of returning parameters from a routine is to pass a pointer to the data
to be modified. If you have taken some programming courses before, you are probably
groaning at the thought of pointers. You probably remember them as being difficult to
work with, but they are necessary in some situations and they can make your application
development easier. The next few paragraphs provide everything I think you need to know
about pointers for microcontroller programming.

First, pointers are type defined and are used to provide a direct pointer into data mem-
ory of an application. Where I defined the accessing an array variable element as:

Address = Offset + Element

When using a pointer, the Address value calculated can be loaded in as the pointer’s ad-
dress and the array accessed from there. Data pointed to can be very easily accessed as a
single-dimensional array of bytes in C. For example, if you wanted to find the third byte in
a string and print it out, the following C code is required:

char far * StringPtr;
char String[451 = “So, So you think you can tell...”;
StringPtr = &Stringl[01;
printf(“The Third Character of \“String\” is: \“%Zc\”\n”,
StringPtrl 2 1);

The first line defines a pointer named StringPtr to type char. The next line creates a
pointer (String) to an single-dimensional array 45 bytes long that has been initialized to a
line from an old song. In the third line, the pointer to the initialized array is passed to String-
Ptr. The last line is used to output the third character of the initialized array (the comma).

38 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

In C, the & character is used to define the physical location of a variable in memory. The
* character is used to define, return, or set the current value of a pointer.

In this code, a pointer is used both to point to data as well as provide a label into an ar-
ray element. After seeing this code, you’re probably wondering what is the difference
between a string, an array or characters, and a pointer to a string. There really is no difference.

This is important because it means that you can store data from a file into a buffer, point
to the buffer, and index into the buffer using the same pointer that was set up when the
buffer was initially created and the memory for the buffer was allocated.

Being able to understand and recreate the code above is all I think anybody should be
capable of when they develop a C application. This level of knowledge will allow you to
access buffers (as single-dimensional arrays), as well as keep track of where the buffers
are in memory.

I have not presented a very comprehensive tutorial on pointers because they are not
really appropriate to use with the PICmicro® MCU. Pointers are best used in applications
and systems that can access large amounts of memory and require a large amount of data
to process. As well, pointers are also best suited to processors that can have a large amount
of physical memory. The mid-range PICmicro® MCUs can have up to file register 392
bytes that are not stored in a contiguous fashion, which really eliminates much of the need for
pointers.

THE BASIC LANGUAGE

The BASIC (Beginner’s All-purpose Symbolic Instruction Code) language has been used by
new computer programmers for more than 30 years. It really became famous when it was in-
cluded with the Apple][computer in the mid-1970s. There are a number of BASICs are
available for the PICmicro® MCU, one of which is described in detail in the next section.

In its original form, the BASIC language is somewhat unstructured, although Microsoft
has done a lot to enhance the language and make it easier to work with. This section intro-
duces the BASIC language, with Microsoft’s extensions. The next two sections introduce
PicBasic (which is provided by meLabs), as well as Visual Basic, Microsoft’s outstanding
tool for creating Windows applications.

BASIC variables do not have to be declared, except in specialized cases. The variable
name itself follows normal conventions of a letter or _ character as the first character, fol-
lowed by alphanumeric characters and _ for variable names. Variable (and address label)
names might be case sensitive, depending on the version.

TABLE 13 Basic Language Data Type Specification

SUFFIX FUNCTION
$ String Data
% Integer
& Long Integer (32 Bits) - Microsoft BASIC Extension
! Single Precision (32 Bits) - Microsoft BASIC Extension
Double Precision (64 Bits) - Microsoft BASIC Extension

INTRODUCTION TO PROGRAMMING

39

To specify data types, a suffix character is added to the end of the variable name (Ta-
ble 13).
In Microsoft BASICs, the DIM statement can be used to specify a variable type:

DIM Variable AS INTEGER

without using the suffixes.
To declare arrays, the DIM statement is used like:

DIM Variable([Low TOJ High[, [Low TO] High...1) [AS Typel]

A number of built-in statements are used to provide specific language functions to ap-
plications (Table 14).

TABLE 14 Basic Language Built In Function Statements

STATEMENT FUNCTION

BASE Starting Array Element

DATA Data Block Header

DIM Dimension Array Declaration

OPTION Starting Array Element

LET Assignment Statement (Not Mandatory)
RANDOMIZE Reset Random Number “Seed”

INPUT [Prompt ,] Variables Get Terminal Input

PRINT Output to a Terminal

? Output to a Terminal

READ Get “Data” Information

GOTO Jump to Line Number/Label

GOSUB Call Subroutine at Line Number/Label
RETURN Return to Caller from Subroutine

IF Condition [THEN] Conditionally Execute the “Statement”
Statement

FOR Variable = Init TO Loop Specified Number of Times

Last [STEP Inc] . . .

NEXT [Variable]

ON Event GOTO On an Event, Jump to Line Number/Label
RESTORE Restore the “DATA” Pointer

STOP Stop Program Execution

END End Program Execution

‘ Comment - Everything to the Right is Ignored

(continued)

40 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 14 Basic Language Built In Function Statements (Continued)

STATEMENT FUNCTION

REM Comment - Everything to the Right is Ignored
ABS Get Absolute Value of a Number

SGN Return the Sign of a Number

Ccos Return Cosine of an Angle (input usually in Radians)
SIN Return Sine of an Angle (input usually in Radians)
SIN Return Tangent of an Angle (input usually in Radians)
ATN Return the Arc Tangent of a Ratio

INT Convert Real Number to Integer

SQR Return the Square Root of a Number

EXP Return the Power of e for the input

LOG Return the Natural Logarithm for the Input

RND Return a Random Number

TAB Set Tab Columns on Printer

For assignment and if statements, the operators shown in Table 15 are available in BASIC.

BASIC’s order of Operations is quite standard for programming languages (Table 16).

The functions shown in Table 17 are available in Microsoft versions of BASIC for the
PC, as well as some BASICs for the PICmicro® MCU.

PicBasic microEngineering Labs, Inc.’s (meLabs) PicBasic is an excellent tool for
learning about the PICmicro® MCU, before taking the big plunge into assembly-language
programming. The source code required by the compiler is similar to the Parallax Basic
Stamp BS2’s PBASIC, with many improvements and changes to make the language eas-
ier to work with and support different PICmicro®™ MCUs.

This section describes PicBasic Pro, which is the enhanced version of the compiler and
can support the widest range of PICmicro® MCU part numbers. PicBasic Pro is a very
complete application-development system that is able to convert your single-file applica-
tions into PICmicro® MCU statements very efficiently.

PicBasic does not currently have the ability to link together multiple source files, which
means that multiple source files must be “included” in the overall source. Assembly-
language statements are inserted in line to the application. PicBasic produces either
assembler source files or completed .HEX files. It does not create object files for linking
modules together.

For additional information and the latest device libraries, look at the microEngineering
Labs, Inc. web page at http://www.melabs.com/mel/home.htm.

PicBasic Pro is an MS-DOS command-line application that is invoked using the statement:

PBP [options...] source

INTRODUCTION TO PROGRAMMING

41

TABLE 15 Basic Language Built In Operators

OPERATOR OPERATION
3 Addition
- Subtraction
* Multiplication
/ Division
A Exponentiation
“ Start/End of Text String
’ Separator
; Print Concatenation
$ String Variable Identifier
= Assignment/Equals To Test
< Less than
<= Less than or Equals To
> Greater than
>= Greater than or Equals To
<> Not Equals

It has also been compiled to run from the Microsoft Windows Protect mode, using a full
4.3-GB flat memory model to avoid out-of-memory errors that are possible with the MS-
DOS version. To invoke the Protect mode version, open a MS-DOS prompt window in
Microsoft Windows 95/98/NT/2000 and enter in the command:

PBPW [options...] source

TABLE 16 Basic Language Operator Order Of Operations

OPERATORS PRIORITY TYPE

Functions Expression Evaluation
=<><<=>>= Highest Conditional Tests

A Exponentiation

*/ Multiplication/Division
* = Lowest Addition/Subtraction

42 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 17 Microsoft Basic Language Enhancement Functions

FUNCTION OPERATION

AND AND Logical Results

OR OR Logical Results

XOR XOR Logical Results

EQV Test Equivalence of Logical Results

IMP Test Implication of Logical Results

MOD Get the Modulus (remainder) of an
Integer Division

FIX Convert a Floating Point Number to
Integer

DEFSTR Variable Define the Variable as a String (instead
of the “DIM” Statement)

DEFINT Variable Define the Variable as an Integer (in-
stead of the “DIM” Statement)

DEFLNG Variable Define the Variable as a “long” Integer
(instead of the “DIM” Statement)

DEFSNG Variable Define the Variable as a Single Precision

Floating Point Number (instead of the
“DIM” Statement)

DEFDBL Variable Define the Variable as a Double Preci-
sion Floating Point Number (without us-
ing the “DIM” Statement)

REDIM Variable ([low TO] Redefine a Variable
High [, [low TO] High . . .]) [As Type]

ERASE Erase an Array Variable from Memory

LBOUND Return the First Index of an Array
Variable

UBOUND Return the Last Index of an Array
Variable

CONST Variable = Value Define a Constant Value

DECLARE Function | Subroutine Declare a Subroutine/Function Prototype
at Program Start

DEF FNFunction (Arg [, Arg. . .]) Define a Function (“FNFunction”) that

returns a Value. If a Single Line, then
“END DEF” is not required

END DEF End the Function Definition

FUNCTION Function (Arg [, Arg. . .]) Define a Function. Same Operation,
Different Syntax as “DEF FNFunction”

INTRODUCTION TO PROGRAMMING

43

TABLE 17 Microsoft Basic Language Enhancement Functions (Continued)

FUNCTION

OPERATION

END FUNCTION
SUB Subroutine (Arg[, Arg . . .])

END SUB

DATA Value [, Value . . .]
READ Variable [, Variable . . .]
IF Condition THEN Statements ELSE

Statements END IF
ELSEIF

ON ERROR GOTO Label
RESUME [Label]

ERR
ERL
ERROR #

DO WHILE Condition Statements LOOP

DO Statements LOOP WHILE Condition

DO Statements LOOP UNTIL Condition

Exit

SELECT Variable

CASE Value

END SELECT
LINE INPUT

End a Function Declaration

Define a “Subroutine” which does not
returns a Value. If a Single Line, then
“END DEF” is not required

End the Subroutine Definition

Specify File Data
Read from the “Data” File Data

Perform a Structured If/Else/Endif

Perform a Condition Test/Structured
If/Elseif/Endif instead of simply “Else”

On Error Condition, Jump to Handler

Executed at the End of an Error Handler.
Can either return to current location, 0
(start of Application) or a specific label

Return the Current Error Number
Return the Line the Error Occurred at

Execute an Application-Specific Error
(Number “#”)

Execute “Statements” while “Condition”
is True

Execute “Statements” while “Condition”
is True

Execute “Statements” until “Condition” is
True

Exit Executing “FOR”, “WHILE” and
“UNTIL” Loops without executing Check

Execute based on “Value” “CASE”
Statements used to Test the Value and
Execute Conditionally

Execute within a “SELECT” Statement if
the “Variable” Equals “Value”. “CASE
ELSE” is the Default Case

End the “SELECT” Statement

Get Formatted Input from the User

(continued)

44

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 17 Microsoft Basic Language Enhancement Functions (Continued)

LEFTS$ (String, #)

RIGHTS$ (String, #)

MID$ (String, Start, #)
SPACES$ (#)

LTRIM$
RTRIM$
INSTR (String, SubString)

UCASES$
LCASE$

LEN
CLS
CSRLIN

POS

FUNCTION OPERATION

INPUTS (#) Get the Specified Number (“#”) of
Characters from the User

INKEY$ Check Keyboard and Return Pending
Characters or Zero

ASC Convert the Character into an Integer
ASCII

Code

CHR$ Convert the Integer ASCII Code into a
Character

VAR Convert the String into an into an Integer
Number

STR$ Convert the Integer Number into a String

Return the Specified Number (“#”) of Left
Most Characters in “String”

Return the Specified Number (“#”) of Right
Most Characters in “String”

Return/Overwrite the Specified Number (“#”)
of Characters at Position “Start” in “String”

Returns a String of the Specified Number
(“#”) of ASCII Blanks

Remove the Leading Blanks from a String
Remove the Trailing Blanks from a String

Return the Position of “SubString” in
“String”

Convert all the Lower Case Characters in
a String to Upper Case

Convert all the Upper Case Characters in
a String to Upper Case

Return the Length of a String
Clear the Screen

Return the Current Line that the Cursor
is On

Return the Current Column that the Cursor
is On

INTRODUCTION TO PROGRAMMING

45

TABLE 17 Microsoft Basic Language Enhancement Functions (Continued)

PRINT USING “Format”

SCREEN mode [, [Color] [, [Page]
[, Visual]

COLOR [foreground] [, [background]
[,border]]

PALETTE [attribute, color]

VIEW [[SCREEN] (x1, y1) — (x2, y2)
[, [color]] [, border]]]

WINDOW [[SCREEN]
(X1= y1) - (X2’ y2)]
PSET (x, y) [, color]
PRESET (x, y)

LINE (x1, y1) — (x2, y2) [, Color]
[, [B | BF][, style]l]

CIRCLE (x, y), radius [, [color]
[, [start] [, end] [, aspect]]]]

DRAW CommandString

FUNCTION OPERATION

LOCATE X, Y Specify the Row/Column of the Cursor
(Top Leftis 1, 1)

SPC Move the Display the Specified Number

of Spaces

Print the Value in the Specified Format.
‘g oy «r 4N Characters are used for
number formats

Set the Screen Mode. “Color” is 0 to
display on a “Color” display, 1 to display
on a “Monochrome”. “Page” is the Page
that receives 1/0 and “Visual” is the Page
that is currently active.

Specify the Currently Active Colors

Change Color Assignments.

Create a small Graphics Window known
as a “Viewport”

Specify the Viewport’s logical location on
the Display

Put a Point on the Display
Return the Point to the Background Color

Draw a Line between the two specified
points. If “B” or “BF” specified, Draw a
Box (“BF” is “Filled)

Draw the Circle at center location and
with the specified “radius”. “start” and
“end” are starting and ending angles (in
radians). “aspect” is the circle’s aspect
for drawing ellipses

Draw an arbitrary Graphics Figure. There
should be spaces between the
commands Commands:

U# - Moves Cursor up # Pixels

D# - Moves Cursor down # Pixels

E# - Moves Cursor up and to the right #
Pixels

(continued)

46

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 17 Microsoft Basic Language Enhancement Functions (Continued)

FUNCTION

OPERATION

LPRINT
BEEP
SOUND Frequency, Duration

PLAY NoteString

DATES$
TIMES$
TIMER

NAME FileName AS NewFileName
KILL FileName
FILES [FileName.Ext]

F# - Moves Cursor down and to the right
Pixels

G# - Moves Cursor down and to the Left
Pixels

H# - Moves Cursor up and to the left #
Pixels

L# - Moves Cursor Left # Pixels
R# - Moves Cursor Right # Pixels

Mxy - Move the Cursor to the Specified
X, y Position

B - Turn Off Pixel Drawing

N - Turns On Cursor and Move to Origi-
nal Position

A# - Rotate Shape in 90 Degree
Increments

C# - Set the Drawing Color

P# Color#Border - Set the Shape Fill and
Border Colors

S# - Set the Drawing Scale
T# - Rotates # Degrees
Send Output to the Printer
“Beep” the Speaker

Make the Specified Sound on the PC’s
Speaker

Output the Specified String of “Notes” to
the PC’s Speaker

Return the Current Date
Return the Current Time

Return the Number of Seconds since
Midnight

Change the Name of a File
Delete the File

List the File (MS-DOS “dir’).
“FileName.Ext” can contain “Wild Cards”

HINTRODUCTION TO PROGRAMMING

47

TABLE 17 Microsoft Basic Language Enhancement Functions (Continued)

FUNCTION

OPERATION

Handle

CLOSE #Handle

RESET

EOF

READ #Handle, Variable
GET #Handle, Variable
INPUT #Handle, Variable
“INPUT”,

WRITE #Handle, Variable
PUT #Handle, Variable
PRINT #Handle, Output

SEEK #Handle, Offset

The source is the MS-DOS (maximum eight character) application code source file

OPEN FileName [FOR Access] AS

Open the File as the Specified Handle
(Starting with the “#” Character).

Access:

| - Open for Text Input
O - Open for Text Output
A - Open to Append Text

B - File is Opened to Access Single
Bytes

R - Open to Read and Write Structured
Variables

Close the Specified Files

Close all Open Files

Returns “True” if at the End of a File
Read Data from the File

Read a Variable from the File

Read Formatted Data from the File using
“INPUT USING” and “INPUT$” Formats
Write Data to the File

Write a Variable to a File

Write Data to the File using the “PRINT”
and “PRINT USING” Formats

Move the File Pointer to the Specified
Offset within the File

name with the .BAS extension. Options are compiler execution options (Table 18).

I have not included a list of the different PICmicro®™ MCUs that can have their applica-
tion developed by PicBasic simply because this list changes along with the different parts
that are available from Microchip. meLabs works very hard to ensure that all new PICmi-
cro®™ MCU part numbers are supported as quickly as possible after they are announced. In-
formation on what part numbers the latest version of PicBasic supports can be found at

meLabs’ web site.

PicBasic does assume a constant set of configuration values. For most PICmicro®

MCUs, the configuration fuses are set as shown in Table 19.

48 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 18 PicBasic Command Line Options

OPTION FUNCTION

-h/-? Display the help screen. The help screen is also displayed if
no options or source file name is specified

-ampasm Use the MPASM Assembler and not the PicBasic Assembler

-C Insert Comments into PicBasic Compiler produced Assembler

Source File. Using this option is recommended if you are going
to produce MPASM Assembler Source from PicBasic

-iPath Specify a new directory “Path” to use for include files in PicBasic

-ILibrary Specify a different library to use when compiling. Device specific
libraries are provided by PicBasic when the processor is specified

-od Generate a listing, symbol table and map files

-ol Generate a listing file

-pPICmicro® MCU Specify the “PICmicro® MCU?” that the source is to be compiled
into. If this parameter is not specified, then a PIC16F84 is used
as the processor. “P|Cmicro® MCU?” is in the format: 16F84,
where the “PIC” at the start of the Microchip part number is not

specified.
-S Do not assemble the compiled code
-v Turn on “Verbose Mode” which provides additional information

when the application is compiled
. ___|

When you program the PICmicro® MCU, you should be comfortable with the oscillator
and PWRTE value. The watchdog timer should be left enabled because the NAP and
SLEEP instructions use it.

Along with using the MS-DOS command line, PicBasic can be used with MPLAB. This
is the preferred way of working with PicBasic because it works seamlessly with the
Microchip tools. Chapter 16 includes two projects that used PicBasic Pro for the applica-
tion’s source code to demonstrate how PicBasic works with MPLAB.

To use PicBasic with MPLAB, after installing PicBasic, select Install Language Tool
under MPLAB’s Project pull down and select microEngineering Labs, Inc. for the Lan-

TABLE 19 PicBasic Default Configuration Fuse Settings

FEATURE PICBASIC SETTING

Code Protect Off

Oscillator XT - or Internal RC if 12Cxxx
WDT On

PWRTE Off

INTRODUCTION TO PROGRAMMING 49

guage Suite, followed by the PicBasic that you are using. Figure 10 shows the Install Lan-
guage Tool dialog box with the tool selection being made. After PicBasic or PicBasic Pro
has been selected, click on Browse to find PBC.EXE or PBPW.EXE. Finally, be sure that
the Command Line radio button is selected and click on OK. After doing this, you will be
able to create PicBasic projects as if they were assembler projects.

The only issue I have with using the PicBasic compiler is that the project and source
files must reside in the same subdirectory as the PicBasic compiler and its associated files.
This breaks up my normal strategy of keeping all the project files in a directory that is dif-
ferent from the tool directory.

When you develop your PicBasic applications, I recommend that you copy them into a
separate subdirectory when you are finished and delete them from the PicBasic execution
directory. This avoids ending up with large, confusing PicBasic subdirectories and no idea
what is in them.

The source code used with PicBasic should not be surprising for you if you’ve ever
worked with a high-level language before. The four different types of programming con-
structs that I introduced earlier in this appendix are well represented in the language. The
language is not procedural based, like C, but it does allow multiple subroutines and does
have many built-in instructions that you can use to your advantage.

The starting point of the language is the label. Labels are used to specify execution ad-
dresses, variables, hardware registers, and constant strings. Like most other languages,
PicBasic labels are case sensitive and can include the characters 4 to Z, 0 to 9, and _. A nu-
meric cannot be used as the first character of the label.

Labels in the application code are used to provide jump to and call addresses. They are
indicated by written into the application code, starting at the left-most column of the
source file and terminated with a colon (). To access the label, the label name is used in a
goto, call, or branch statement. For example, to implement an endless loop, you would use
the label declaration and goto statement:

Loop: ‘ Return here after running through the Code
‘ Code to Execute inside the loop
goto Loop * Jump back to “Loop” and Start Executing

‘

again

Install Language Tool

microEnginering Lab, In._.
PicBasic Pro Compiler ¥
C:\PBP\PBP_EXE Browse |

R

Figure 10 PicBasic MPLAB installation tool

50

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

Absolute addresses are not available within PicBasic, the labels should always be de-
fined and referenced. The interrupt vector (address 0x004) in the mid-range PICmicro®
MCUs is described in the following paragraphs.

In this example, I have placed a number of comments after the single quote () charac-
ter. The compiler will ignore everything to the right of the single quote character, just as it
is for the comment character (;') in assembly-language programming.

Variables in PicBasic can be defined one of two different ways. Each way reflects a
method that was used by the two different Basic Stamps. In the BS1, variables are prede-
fined in the system and broken up either into 16-bit words (which are given the identifiers,
w0, wil, w2, etc.), eight-bit “bytes” (with the identifiers b0, b1 ®MDR V..., and bits (with
the identifiers Bit# or just the bit number). The maximum number of variables in the BS1
system is defined by the processor used (in the BS1, which uses the PIC16C54, only 14
bytes are available in memory).

Each byte occurs in one of the words. For example, b4 is the least-significant byte of
w2. The 16-bit variables are defined as being a part of the 16 bits taken up by w0 (b0 and
b1). This method works well, but care has to be taken to ensure that the overlapping vari-
ables are kept track of and not used incorrectly. The most common problem for new Basic
Stamp developers is defining a variable on b0 and w0 and having problems when a write
to one variable overwrites the other.

To provide these variables to the PicBasic application, the Basic Stamp variable decla-
ration files are defined in the following two include files that are shown within include
statements below. Only one of these statements can be used in an application.

include “bsldefs.bas”
include “bs2defs.bas”

A much better way to declare variables is to use the var directive to select the different
variables at the start of the application and let the PicBasic compiler determine where the
variables belong and how they are accessed (i.e., put in different variable pages). Along
with the var directive, the word, byte, and bit directives are used to specify the size of the
variable. Some example variable declarations are:

WordVariable var word ‘ Declare a 16 Bit Variable
ByteVariable var byte ‘ Declare an 8 Bit Variable
BitVariable var bit ‘ Declare a single byte Variable

Initial values for the variables cannot be made at the variable declarations.

Along with defining variables, the var directive can be used to define variable labels
built out of previously defined variables to specify specific data. Using these variables, I
can break WordVariable up into a top half and bottom half and ByteVariable into specific
bytes with the statements:

WordVariableTop var WordVariable.bytel
WordVariableBottom var WordVariable.byte0
BitVariableMSB var BitVariable.bit7/
BitVariablelLSB var BitVariable.O

Variables can also be defined over registers. When the PicBasic libraries are merged
with the source code, the standard PICmicro® MCU register names are available within

INTRODUCTION TO PROGRAMMING 51

the application. Using this capability, labels within the application can be made to help
make the application easier to work with. For example, to define the bits needed for an
LCD, the following declarations could be used:

LCDData var PORTB ‘ PORTB as the 8 Bits of Data

LCDE var PORTA.O ‘ RAO is “E” Strobe

LCDRS var PORTA.1 ‘* RA1 is Data/Instruction Select
LCDRW var PORTA.2 ‘ RA2 is the Read/Write Select Bit

When variables are defined using the var and system directives, specific addresses can
be made in the application. For example, the statement:

int_w var byte $0C system

will define the variable _w at address 0x00C in the system. This reserves address 0x00C
and does not allow its use by any other variables.
The bank of a variable can be specified using the system directive, like:

int_status var byte bank0 system

These two options to the var directive are useful when defining variables for interrupt
handlers.

Along with redefining variables with the var statement, PicBasic also has the symbol di-
rective. The symbol directive provides the same capabilities as the var statement and it is
provided simply for compatibility with the BS1. If you are only developing PicBasic ap-
plications, I would recommend only using var and avoiding the symbol directive.

Single-dimensional arrays can be defined within PicBasic for each of the three data
types when the variable is declared.

‘

WordArray var word[10] Ten Word Array
ByteArray var byte[11] ‘ Eleven Byte Array
BitArray var bit[12] ‘ Twelve Bit Array

Note that bits can be handled as an array element, which is a really nice feature to the
language. Depending on the PICmicro® MCU part number, the maximum array sizes are
shown in Table 20.

As part of the “bit” definition, I/O port pins are predefined within PicBasic. Up to 16
pins (addressed using the Pin# format, where # is the pin number) can be accessed,
although how they are accessed changes according to the PICmicro® MCU part number
that the application is designed for. The pins for different parts are defined in Table 21.

TABLE 20 PicBasic Array Restrictions

VARIABLE TYPE MAXIMUM NUMBER OF ELEMENTS
Word 32
Byte 64
Bit 128

52 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 21 PicBasic Pin To PICmicro® MCU Specifications

NUMBER OF PINS PINS0-7 PINS 8 - 15

8 GPIO Mapped onto Pins 0 — 5
18 PORTB PORTA

28 - Not PIC14C000 PORTB PORTC

14C000 PORTC PORTD

40 Pin PORTB PORTC

Notice that not all the ports that have all eight pins specified. For example, accessing
pin6 in an 18-pin device (which does not have an RA6 bit) will not do anything.

Constants are declared in a similar manner to constants but using the con directive with
a constant parameter:

SampleConstant con 3 + 7 ‘ Define a Sample Constant

Constant values can be in four different formats. Table 22 lists the different formats and
the modifiers to indicate to the PicBasic compiler which data type is being specified
(Table 22).

In Table 22, notice that only an ASCII byte can be passed within double quotes. Some
instructions (following) can be defined with strings of characters that are enclosed within
double quotes.

The define statement is used to change constants given defaults within the PICmicro®
MCU when a PicBasic-compiled application is running. The format is:

DEFINE Label NewValue

The labels, their default values and their values are listed in Table 23.

The OSC define should be specified if serial I/O is going to be implemented in the
PICmicro®™ MCU. This value is used by the compiler to calculate the time delays neces-
sary for advanced operations.

TABLE 22 PicBasic Data Types

DATA TYPE MODIFIER COMMENTS

Decimal None PicBasic Default is Decimal

Hex $ “$” is placed before the Number

Binary % “%” is placed before the Number

ASCII “ Double Quotes placed around a Single Character

(penunuoa)
___|

SNON gPIoIWDId XXeDg | au) Ul NOHJ 33 [eusalu| asn o} 19 L0 b TVYNYILNIOZI

MOJ pfay st dull 1OS 8y} liym uoissiwsues} Og| dois L0 b dloH Ozl
paJisep s bunjosyo

Ayred i pasn AuQ "senjep 10918 Ajed sHod [euaS arempieH L0 b aao 43sH
paJisap sI Bunosyo

Ared Ji pasn AluQ "senjep 109jes Ajed s Uod [euss arempieH L0 b N3IAI H3SH
SUONBOIUNWIWOYD SNOUOIYDUASY 10} 18S Jnejeq

19181681 1 SX 1, 10} @N[EA UOHEZI[BIIU| SHOd [BlSS SJempieH 440%X0 -0 020X0 V1SX1 "3SH
SUONBOIUNWWOYD SNOUOIYDUASY 0} 18S Jnejed

ieisibai ¥ 1SD4, 104 8NfeA uonezifeniu| sHod [euss aiempieH 440%X0-0 060%X0 V1SOY Y3SH

anjeA Jaisiboy HHEdS SHod [euss aiempleH 440%X0 -0 Ge DHEdS Y3SH

ojey eye(sHod [euss alempieH Auy 002 anvg Y3sH

0} pajoauuo) sl uld induj Bngag Hod 140d Auy g140d 534 NIDNg3a

paMBAU |, ‘“©AIISOd 0, "E¥ep Indu| ZdN Bngaq jo Anrejod L0 b 300N NIDNg3a

IndinQ [euas Bnge(404 uld indu L-0 0 Lig NIong3a

0} pajosuuo) sl uid indinQ Bngeq Hod 140d Auy g140d 534 DNg3a

sjuswerels HNGIJ 40} SieeIey) INAINQ UsBMIB] B | 1] dAsod Auy 000} ONIOVd DNg3a

peueAu] |, ‘©AISOd 0, "erep IndinO Z4N Bngeq jo Aejod L0 b 3aow vng3a

IndinQ [enes Bngeq 1oy uld IndinQ L-0 0 lLia ong3a

uonrew.ojul BngaQ Jo erey eyeq payoads Auy 002 anvg vng3aa

si9j0eIEeYD INOJSS Usamiaqg swlL | dAsod Auy 000} DNIOVd HVYHO

soasw ul Aejoq @ounogeq uonng U] ansod Auy (o] 3Isnvd NOLLNg

SIN3ININOD SANTVA TVYNOILdJO 171nv43a 3NI43a

sJ9j2weled buijesadQ jeuiaju] sisegodid €2 I19V.L

53

suolonuisul
£1N0OY3S, Pue ZNIY3S, YIM Juss siiq Jo Jaqunp Apoads 8-t 8 Slig ed3s
2,902101d 10} T¥O0S0 18S L0 b M2 IvO0SO
2,90210ld 40} TI¥00SO 19S L0 b ML 1VO0SO

85°¢€ Allenioe si g, 810N "ZHI Ul peeds 0Z ‘9l

Bunesado NON goIWDId Ajtoads zL'oL'8'Y'e 14 0S0
le)s1bay 10919S 19 SH A0 140d Auy v140d ©3YSH Qo1
uonos|es Ig SH A1 140d Auy 14 11gs4™aon

'sgO7 aul|

91buls awos ul pasn s uoieoyoads aull ajdiynw 8yl moy Jo} sgo
UO UONBWLIOJU| %08YD @D 8y} Uo saur jo JequinN ays Ajioads 2t 4 S3aNIT dol
g 30010 3., Q071 8U} 1o} Hod 8y} Ajoads 140d Auy g140d 93437 ao1
%9010 @1 8u} 1o} g ay) Ajoads L-0 € g3 aon
Uod ejeg g1 8y} 109|9S 140d Auy v140d ©34d dol
ejed Q01 40} 1q eyeq ay) Ajoads 70 0 liaa aol
9oep8luU| QO 40} Siig Jo JequinN 8 ‘v 14 slig aol
oyes eyep sday 00| Uey} 810w ou Je Og| 8y} uny L0 b MO1S Ozl
JaAlQ %0019 Og| ureiq-uadQ ue jo pesjsul JaAlQ Jejodig e asn L0 b 1N010s ozl
SIN3INNOD S3NTVA TVNOILdO 17nv43a INId3a

(panuIrjuoy) sidjsweied buijesadQ |eusdju] sisegdid €2 3179dVL

54

INTRODUCTION TO PROGRAMMING

55

Assembly language can be inserted at any point within a PicBasic application. Single in-
structions can be inserted by simply starting the line with an @ character:

@ bcf INTCON, TOIF ; Reset TOIF Flag

Multiple lines of assembly language are prefaced by the asm statement and finished
with the endasm. An example of this is:

asm
moviw 8 ; Loop 8x
Loop
bsf PORTA, O ; Pulse the Bit
bcf PORTA, O
addlw $0FF ; Subtract 1 from “w”
btfss STATUS, Z ; Do 8x
goto Loop
endasm

Notice that labels inside the assembler statements do not have a colon at the end of the
string and that traditional assembly-language comment indicators (the semi-colon ;) is used.

Implementing interrupt handlers in PicBasic can be done one of two ways. The simplest
way of implementing it is using the ON INTERRUPT GOTO Label statement. Using this
statement, any time an interrupt request is received, the label specified in the ON INTER-
RUPT statement will be executed until there is a resume instruction which returns from an
interrupt. Using this type of interrupt handler, straight PicBasic statements can be used and
assembly-language statements avoided.

The basic operation looks like:

ON INTERRUPT GOTO IntHandler

IntHandler:
disable * Turn off interrupt and debug requests

‘

Process Interrupt

enable ‘ Enable other Interrupts and debug
‘ requests
resume ‘ Return to the executing code

The problem with this method is the interrupt handler is executed once the current in-
struction has completed. If a very long instruction is being executed (for example, a string
serial send), then the interrupt will not be serviced in a timely manner.

The best way of handling an interrupt is to add the interrupt handler as an assembly-
language routine. To reference the interrupt handler, the define INTHAND Label instruc-
tion is used to identify the label where the assembly-language code is listed. The interrupt
handler will be moved to start at address 0x004 in the mid-range devices.

A code template for generic mid-range PICmicro® MCU interrupt handlers is:

int_w var byte 0x020 system ‘ Define the Context Save Variables
int_status var byte bank0 system

int_fsr var byte bank0O system

int_pclath byte bank0 system

56 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

define INTHAND IntHandler ‘ Specify what the Interrupt
‘ Handler is

Interrupt Handler — to be relocated to 0x00004

asm
IntHandler
movwf int_w ; Save the Context Registers
movf STATUS, w
bcf STATUS, RPO ; Move to bank 0

bcf STATUS, RP1
movwf int_status
movf FSR, w
movwf int_fsr
movf PCLATH, w
movwf int_pclath
{HHHE - Execute Interrupt Handler Code Here

movf int_pclath, w ; Finished, restore the Context
movwf PCLATH ; Registers

movf int_fsr, w

movwf FSR

movf int_status, w
movwf STATUS
swapf int_w, f
swapf int_w, w
retfie

endasm

If you are reading through this appendix to try and understand programming better, you
might be confused by my use of assembly language for the PICmicro® MCU here. The
reason why I included the two assembly-language examples was for a later reference for
you. As you read through the text of the book, the two assembly-language snippets will
make a lot more sense to you.

In the interrupt template, notice that I am working through a “worst case” condition. I
am assuming that execution is taking place in something other than bank 0, the FSR has
been given a specific value along with the PICmicro® MCU having more than one page
of program memory. If you use this template in your own applications, I do not recom-
mend that this code be changed. The only way you can be sure that the index register is not
being used and execution will be in bank 0, along with the processor taking program mem-
ory addresses out of page 0, is to look at the code produced by the compiler. Rather than
going to this trouble, you should just use this template and insert your interrupt-handler
code at the comment with #### inside it.

You should be aware of one issue when you are adding an assembly-language interrupt
handler and that is you should ensure that no crucially timed PicBasic are executing when
the interrupt is acknowledged. If, for example, a serial transfer was occurring when the in-
terrupt request was received and acknowledged, then you would end up changing the tim-
ing and the data that is potentially received or sent. To ensure that this doesn’t happen, you
will have to disable interrupts while the crucially timed operation is executing.

Mathematical operators used in assignment statements and PicBasic instructions are
very straightforward in PicBasic and work conventionally. In Basic Stamp PBASIC, you
must remember that the operations execute from left to right. Thus, the statement:

A=B+ C*D

INTRODUCTION TO PROGRAMMING 57

which you would expect to operate as:

1 Multiply C and D
2 Add the results from 1 to B

In PBASIC, it returns the result of:

1 Get the sum of B and C
2 Multiply the results from 1 with D

PicBasic does not follow the PBASIC evaluation convention and returns the expected
result from complex statements like the previous one. Thus, in PicBasic, you do not have
to break complex statements up into single operations, like you do in PBASIC, to avoid
unexpected expression evaluation. If you are using a Basic Stamp to “prototype” PicBasic
applications, then I recommend that you break up the complex statements and use the tem-
porary values as shown elsewhere in the book.

The mathematical operators are listed in Table 24, along with their execution priority
and parameters. All mathematical operators work with 16-bit values.

Along with the mathematical operators, the if statement provides the following test con-
ditions. This is listed in the following table. Notice that both the BASIC standard labels as
well as the C standard labels are used. Parml and Parm2 are constants, variables, or state-
ments made up of variables statements, along with the different mathematical operators
and test conditions.

When a test condition is true, a nonzero is returned, if it is false, then a zero is returned.
Using this convention, single variable parameters can be tested in if statements, rather than
performing comparisons of them to zero. The comparison operators are listed in Table 25.

The PicBasic instructions are based on the Parallax Basic Stamp PBASIC language. Al-
though there are a lot of similarities, they are really two different languages. Table 26 lists
all the PicBasic instructions and indicated any special considerations that should be made
for them, with respect to being compiled in a PICmicro® MCU.

These instructions are really library routines that are called by the mainline of the appli-
cation. I am mentioning this because you will notice that the size of the application changes
based on the number of instructions that are used in the application. You might find that you
can drastically reduce the program memory size by looking at the different instructions that
are used and change the statements to assembler or explicit PicBasic statements.

When I specified the various instructions, notice that the square brackets (/and]) are used
to specify data tables in some instructions. For this reason, I have specified optional values
using braces ({ and }), which breaks with the conventions used in the rest of the book.

Visual Basic Microsoft’s Visual Basic is probably the fastest way to get into Mi-
crosoft Windows application programming. This ease of using the language and devel-
opment system also makes it great as a “what if” tool and allows you to write an
application quickly to try out new ideas.

To create an application, the Primary dialog box (which is known as a form, Fig. 11) is
created first, with different features (I/O boxes, buttons, etc.). These features are known as
controls within Visual Basic. With the Window defined, by simply clicking on the differ-
ent controls, subroutine prototypes to handle “events” (such as mouse clicks over these

«<cWied, HOX «LNHVd, JO SN[eA SSIMIIQ PaUBAUI 8y} uiniay

«cWied, HO «NHVd, 4O dN[eA 8SIMlIg palaAul 8y} uiniey

Lguied, ANV .lWwied, Jo enjeA asimliq pauaAul By} uiniay

LINHYd, O 8N[EA 8SIMIIG POUBAUI BU} UINjeY

2WIed, HOX .HNHVd, JO @n[eA 8simiig ay) uinjey

wied, HO HNHVYd, JO enfeA asimig sy} uinjey

Zwied, ANV .Lwied, 10 anfeA asimiiq ay) uiniay

" SNINPOA|,, BY} SB UMOUY S| SIY] " |Wied Ojul gwied BUIpIAIp Woly Jopulewsl ayy uinjey
Ajusne |uired OjUI PBPIAIP 80 UBD gulied Sawi} JO Jaquinu sy} uiniay

1Nsal 8y Jo € pue g selfg Se o] palisjal
usalo SI siy] " gwied, pue ,|wied, Jo jonpoid sy} JO Sligq UsslXIs Jueoliubls 1sow sy uinjey

nsal 8y} Jo g pue | selAg se
0} paliejel Uslo SI SIYyl ", gwied, pue . uled, Jo 1onpoid sy} Jo slig UssIXIS 8|ppIw 8y} uiniay

1INsal 8y} Jo | pue Q selkg Se o0} pallsjal
uslo SI siy] “gulied, pue . Lwied, o 1onpoid ay} Jo suq uss)xis ueoyiubis jses| sy} uinjey

«Wied, Woli} pajoeiiqns gwied, o }nsay sy} uiniay

uied, pue |wied, jo Wng ay} uinjey

guwied A, Luued
guied /| Lwied
guied /3 Lwied
Lwied ~

guied v Lwied
gwied | Lued
guied 3 |uwied
guued // Luled
gued / Lwied

gwied ., Luied

culed /, fwied

Juued , Luued
Zwied — jwied

guied + Lwied

1SOMOT]

NOILVH3dO

H01lvd3do

AlLlHOIdd

suonjesadQ 11g pue [esnjewsyje disegdid bz 31dVL

58

(09€ [euompes oy} jou) seaifiep 95z pue /gL snipel

1O 8]2419 & UO paseq aq ||IM anjeA pauinial 8y -, | Wwied, Jo ,8uIso), duewouobi] syl uiney

(09€ [euonipes} 8y} Jou) seaibep 95g pue /g| snipel

JO ©]04I0 B UO paseq a4 ||IM anjeA pauinial 8y -, | wied, Jo ,8ulS, oujewouobli] 8y} uinjey

(Lwed, 10 100y atenbg 1ebaiu| syl uiniey

(<1 10000 }%.,,
uinas M .7 A3H 001 L0 L0 L%,,) “.ZWiBd,, O} 0I8Z WO} | Wied, Ul siig 8y} asionay

«+uted, ul 1q 1es 1seybiy ey} Jo Jaquinu Jig 8y} uinjey

(.00001000%, SWINIdI & ADA,) 189S U] | Wied, dYs Ajuo yum snjeA e uiniey

(«e» Suinial (L DI €21,) "« Wied, Jo (paseg ola7) w.ed, /oquinN 1b1q uiniey
Jajaweled Jamo| 8y} uiniay

Jajpweled Jaybly ayy uiniey

(., SuINaJ pue . Sgv,, 01 |enba si .— Sgv,) Jequinu e Jo spnyubew ay} uinjey
019z 8q |[e [|Im SHq JuedyIubis }sow mau 8y 'sHg guiied, 1Bl sy} 0} L wied, HUS

0197 8q |& [|IM S}q JUBOIIUBIS 1Ses| MaU 8y "SHq ZWied, J| 8U} O} L ulied, WIYS

luled SO0

fwied NIS
lwied HOS

culied AJY jwied
lwied AdON

lwied aod

guied OIQ wied
culied NIN wied
culed XYIN Luwied
lwied Sgv

Jwled << Lwied

gwied >> |uwied

1seybiH

59

60 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 25 PicBasic Logical Operations

TEST CONDITION DESCRIPTION

Parm1 = Parm2 Return a Non-Zero if “Parm1” equals Parm2”

Parm1 == Parm2 Return a Non-Zero if “Parm1” equals “Parm2”

Parmi1 <> Parm2 Return a Non-Zero if “Parm1” does not equal “Parm2”

Parm1 ! = Parm2 Return a Non-Zero if “Parm1” does not equal “Parm2”

Parmi1 < Parm2 Return a Non-Zero if “Parm1” is less than “Parm2”

Parm1 <= Parm2 Return a Non-Zero if “Parm1” is less than or equal to
“Parm2”

Parm1 > Parm2 Return a Non-Zero if “Parm1” is greater than “Parm2”

Parm1 >= Parm2 Return a Non-Zero if “Parm1” is greater than or equal to
“Parm2”

Parm1 AND Parm2 Return a Non-Zero if “Parm1” is Non-Zero and “Parm2”
is Non-Zero

Parm1 && Parm2 Return a Non-Zero if “Parm1” is Non-Zero and “Parm2”
is Non-Zero

Parm1 OR Parm2 Return a Non-Zero if “Parm1” is Non-Zero or “Parm2” is
Non-Zero

Parm1 || Parm2 Return a Non-Zero if “Parm1” is Non-Zero or “Parm2” is
Non-Zero

Parm1 XOR Parm2 Return a Non-Zero if “Parm1” and “Parm2” are different
logical values.

Parm1 AN Parm2 Return a Non-Zero if “Parm1” and “Parm2” are different
logical values.

Parm1 NOT AND Parm2 Return Zero if “Parm1” is Non-Zero and “Parm2” is
Non-Zero

Parm1 NOT OR Parm2 Return Zero if “Parm1” is Non-Zero or “Parm2” is
Non-Zero

Parm1 NOT XOR Parm?2 Return a Non-Zero if “Parm1” and “Parm2” are in the
same logical state.

features) are automatically created. Additional features in Visual Basic’s source-code ed-
itor allow you to specify the control parameters (known as properties).

This section does not include a description of the MSComm control that can be used to
provide serial interfaces from the PC to the PICmicro® MCU. T have described it in detail
in the “PC Interfacing” chapter because I consider it the primary method of interfacing a
PICmicro® MCU to the PC because of the serial port’s standard interface and isolation
from the PC’s and PICmicro® MCU’s hardware.

(panunuoa)

61

suononAsul [NOHIS PUe N/HIS 8y uey} eoeds

ss9| dn aye} Ay} asnedaq Q| [e1as 10} pasn aq ued (N/HNg3J Pue) uononasul Siy |
"a1Ag ||DSY 9y} UBY} JaYiel ‘JUsS S| dLBWNU [BWIDBP 8Y) ‘BnjeA e 8104ag Juss Si (£20X0)

|IDSYV Ue §| "ejep Ja1owesed sy} ssed ‘paindsxa S| UOIIoNJISUl SIYl USYAA “19sal Je saulep
DNg33d ay ul pasn sisjsweled indino [euss ayi yum indino se uid HNg3ag 8yl suyaq

"SjuUBWBI.]S VL i/ 8ldnnw asn ‘sesselppe Jualayip Je erep 104 ‘pawweld
-01d sI NDIN @0I0IWD|d BY} UBYM LoRo0T e Builels NOHdTT Blep Ul SJUBISU0D 8101S

'SW poL84 Ul Jnd20 Jey} uld uo sasind Jo Jaquinu a8y} Junod
"0J9Z YIM S9|qelieA 8y} ||e peoT
‘suononusul jjeo ebenbuel-Ajlguesse ay) 81noax3

(0) pasesja1 10 (1) passaid si Asy ayi usym 1n2oo 0} dwnl sy} Juem

NoA 10U J0 JBYIBYM SI UOHOY "UOonduUNy SIY) Ul pasn AJuo ajqeleA pazis-aiAq e siJeag “suaddey
yeadaioine ue 1eys anil si dwnl NOL 1 Ng 1S4l BU} J8}je Suoled0Aul Auew Moy SI ey

"us e} Sl UoiIY BU) 810jaq anJ} 8g 0} SeY dlelS UMoJ U} SUOIFBOOAUL JO Jaquinu 8y} si Aejag
'PASO[0 8q 0} PAWNSSE 8q 0} YOUMS 8y} 40} d1els uid 8y} S| umMog "SUONEBIOAUI UOIONJISUI
NO.L.LNE 10 Jaquinu payioads ay} Jo} passaid usaq sey uoing ay} usym aqe7 o} dwnp

‘Aowaw

weiboid NDON @%oIWoId ul aloymAue dwnl ued uononiisul Siy] 018 ‘[@qeT puodas ay

0] dwnl 0} UoIINJBXd BSNED ||IM BUO JO X8pU| Ue ‘8qe] 111} 8y} 0} dwnl uonnoaxa asneo [|Im
0192 JO Xapu| Ue 0S ‘paseq 019z S| Xxapu| xapu| Ul anjeA ay) Agq paiioads jage7 ay} o) dwnp

‘pUBWIWODAI S|
uononJIsul JHONYHS 8ui uay; ‘pasn si Aowsw welboid jo abed suo ueyy aiow Yyum NDIN

@2oWOId € i "abed juauna ay} ulyum sdwnl Ajuo uoioNIIsul SIY] "9310 /8qeT PuodISs dy}
01 dwnl 0} uoirNddXd BSNED ||IM BUO JO X8puU| Ue ‘8qeT] 1S} 8y} 0} dwn[uonnoaxa asneo [|Im
019Z JO X8puj Ue 0S ‘paseq 019z S| Xapu| "Xapuj ul anjeA ay) Aq pauioads jage7 sy 0} dwnp

{+ - ~enep’} eneA ©DNG3A

{ - " wesuo)‘}
Juejsuo) ‘uoedo] v.vd

|qelEA ‘pouad ‘uld LNNOD
Hv310
1997 TIVO

[8CeT ‘UoioY ‘eng
‘ajey ‘AejeQg ‘umo(‘uild NOLLNA

[1eqe7}
[8ge] ‘xepu| THONYHY

[-1eqeT)
[8ge] ‘xepu] HONVYHSE

NOILdIHOS3a

NOILONYLSNI

suoljdoung uj }jing disegdld 9¢ 378VL

"owin
/1dwo0 18 PaYoBYd SI/ageT 10 BoUBISIXe 8| "8/qeT SSeIpPe Je Sue)s Jey) aunnoigns ay) ||eD

‘Indino
[eubis ay} 1no yjoows, o} indino uid sy} uo pasinbai si Buusyji4 ~dwil swes ay) e sy} Indino
‘panioads si Aousnba.i4 puodss e J| ‘sw uQ Jo} Ui 8y} uo Aousnbai4 payoads ay) IndinQ

"anfeA dojs ey} surebe pajsa) pue pajuswWaloul Sl 9jqeLE, ‘PaIsluNodUs
SI I XJIN UBUAA ‘pauioads si anfea 434S Ou Jl 8UO O} S}Nejap anjeA Juswaioul ay |
"anfeA dojsS 8y} Seyoeal 1 |1un anjeA Lejs 8yl 0} a/gele Buizijeniul 1s1y ‘doo| e ainoexg

‘apow dag|s 1emod-mo| e ul NDIN @2IWoId au ind pue uoneoidde sy buissaooid dois
‘suononJisul

1dNYY3ILNI 379vSId pue 319vSId eui Ag peddols alem jey; suonesedo jdnusiul 8jqeus
‘379vSIa Aq paddois aiem 1ey; suonesado Bngap sjgeus

‘379vSIa Aq paddois sem 1ey; buisseooid 1dniisiul pue Bngap sjgeu]

'V.LVJ Se awes ay}
S1 uogonAsul siy | “pawiwesBoid st NN gOIOIWDId BUl UBUM NOHJTT Ul SenfeA mau 810ls

ndino eubis ayy 1IN0 Yloows,

0} 1ndino uid ay} uo paiinbai si Buus)|i4 ‘g 01 ¥ 10} Spiepuels Ay papusixe 8y} 0] puodsaliod
G| ybnoiyy g| sauo] Ay # au1 i || duo} pue Asy , aui S 0| duo] ‘pedAsy auoyds|s) ayy
uo se awes ay} aJe g ybnoayl g seuo] -uid papoads sy} uo 8dusnbas suo| yono| ayi IndinQ

81Nd8Xa 10U [IM OLOD LdNHHILNI
NO Ing pabpajmouoe aq |1s [im sidniisiu] “suoiesado Bngsp pue sidnusiul 379vSId

B1Nd8X3 10U [IM OLOD LdNYYFLNI
NO Ing peBpsjmouoe aq ||is |jim sidniisiu| ‘suoielado Bngsp pue sidnusiul 37gvSId

payoeal s| (SWw ul payloads st Yolym) anfeA jnoswit/ dui ji [9qe| du}
0} dwinl Jo ul 8Wo9 0} 8)AQ elep B 10} liem ‘pajndaxa Si UONRONJISUl SIYl UBYAA '19Sal Je saulep
NIDNg3d dy! ul pasn siajdweled indul [euas ayi yum indui ue se uid N/OHNgIa B4l dulyeq

[99e71 dNSOO

{Aouanba.4 ¢} Aouanbaig
‘uo ‘uid LNOD3HA

{siqeuep} 1X3aN

{enrep 4315}

dois o] veis = 8jqeueA HOH
an3g

1dNYY3LINI 379N
©Nd3d 379VN3
3719vN3

[-wesuonq}
luBIsuo)] ‘uonedo NOHd33

[{- - "euol‘ltouo]]
{'40 ‘uo} ‘ud L1NO4NLA

1dNYY31INI 371avSId
Jnavsia

[- -siqeuep’} sjqeuep]
{‘leqe Inoswil} NIDNFG3A

NOILdIHOS3a

NOILONY.LSNI

(panunpuo9) suonoung uj }jing disedald 92 3719Vl

62

(panunuoa)

1S4y ues si 814q 3408 e
‘a0 8y} 01 81Ag uonoNJISUl UB PUSS O] "Sauldp D7 dYl Yyum 18s ale sislsweled Buneiado
.00 8YL "NON @Ol 8} 0} PaJaUL0d Q7 8y} 0} S3IAG payioads ay) puss

"JuswWalels JuswWubISSy Ue 10} anjeA uononJisul [leuondo
"apow ndu| o uid paioads ayl Ind

ol
90IN0S 8Uj} Ul UOIBIO0| JUSLIND Y} Je }I Uasul pue A10108.Ip Jusiind 8y} Ul Syg ‘37|14 Ul peor

‘PaIN0aXa aJe Sjuswialels Aue Ydiym Jaye ‘sjuswsiels 4/gNg 10 3573

8y} 0} paioubl ale JuswWsiels 4/ du} JaYe SjuswWalelS ay) Jano diys usy} ‘018z 0} Sejen|end
dwo) }| "pasoubl si ‘uononIISul 4/gNT BU} O} ‘)l Jalfe Sp0d By} USY} ‘PaISIUNOJUS S| JUSWSIE]S
3S73 Ue §| "paIajunodus si JUsWalels H/gNJ Ue 1o JST73 Ue JaUN |Un Mojoq SjusWwo}e)s
By} 81nNdaxa uay} ‘018z 0] [enba jou si 1 §| "uoissaidxa uosuedwod dwo) sy} arenjens

‘1ege7 o1 dwnl uay) ‘oiaz 01 [enba jou S|}l §| “uoissaidxa uosuedwod dwo) sy} ayenjens

*9p0o uoneoldde

9} JO UelS By} 1B JUBWBIE]S | [Buidjul~DZ| auysp ay} Buusiua Ag saainap xxx39D2101d
8y} Ul WOYd33 |euiaiul SS899. 0} Pasn ag Ued UoNONIISUI SIY] “S)q 108[8S 89IA8p 10 X20|q
UHIM 82IA8P 8U} SS829E. 0] Pasn sI ajfgjosjuo) ay] "8dInap Dg| ue o} Buuls 81Aq e puas

'9p0o uoneoldde
8y} Jo Uels 8y} 1e Juswialels | TYNHILNI Ol eulep eyl Bulelus Aq seoinep xxx30210Id
By} Ul NOYd3T [euJslul SS820. 0] pasn aq UBD UONONJISUI SIY] "SI 108]8S-821A8p 10 %00|[q

YlM 921A8P Y} SS929E 0} Pasn si 8j4gJoJjuoD 8y 8dIAep Dg| ue woly Bulys 81Aq e pesy

‘(luasaud JI) 1HVYSN Ul }ing 8y} woJj s8lAg 10w 10 BUO Jwsuel |

‘payioads usaq aAey seuyep A0 YISH, 10 NIAT HISH,
8y} aIns ayew ‘ ageAiued, asn 0] "1081100ul s eiep Buiwooul ayy jo Aued ayy yi 01 padwnl
aq |Im JogqeAnled, 8yl “(luesaid yi) [HYSN Ul HINg 8y} Wol saiAq 810w 10 SUO BAI9O8Y

"ybiy 1 eALp pue Indino ue U4 e

|age ssalppe e sue;s Jeyl apod ayi o) dwnp

{* - eneA‘} eneA 1NOADT
wewubissy {137}
uid 1NdNI

i, 3ANTTONI

d41aN3 {: wewerels 3573}

swelels NIHL dwo) 4
[ege [ege] NIHL dwo) 4]

{legeovoN} [{ - - "~ enjea’}
anfep] {'ssaippy} ‘|o1u0)
‘UId%20|D ‘uldered J1IHMOzI

{legqeovoN}l{ - - - eiqeuen’}
a|jqeleA] {'sseippy} ‘@1hg|osuon
‘UId00|D ‘uldered avadozl

[{- - ~enepA'} enea] LNOY3ISH

[{- - -siqeuep]}
a|qeueA]

{‘leqeT ‘inoswiL}
{‘leqe1fired} NIH3ISH
uld ybiH

[®9e71 OL0O

63

sw ¥0€‘2
Sw g6}
sw 9/9
SWw 882
sw vl
sw e/
sw 9g
sw gl 0
Aejaqg poLad

- N O < O O N~

:81qe} 8y} Ul usAIb s yolym ‘enjea pouad ayj 1oy dsajs, 01 NON @°4!IWDId sy ind
‘abejjon ybiy e yum 1 aAup pue uid 1ndino ue ui4 axen

'S9|qelieA 11IQ-9| 8q ued sanje/A ayl asnedaq dNMOO7T Wol} SISHIP edNMOOT
‘pabueyd J0uU SI 8/geLIE/ PUODSS BY) USY] ‘YoleW OU S| 818 §| "8/qelE/ puodss ay) ul Buuis
anje/ ey} Olul 18SH0 8y} uinjal pue Bulis anjeA e Yim enjeA ajgeLe 1sil ey eredwo)

‘pabueyo
10U S| 9/gelie/ PUOISS By} UBY] ‘Udlew ou Si 818y} J| '8/qelie/, puodas ayy ul Buls jueisuod
8Uj} 0JUI 19S10 BY} UIN}al pue BuLlls JUBISUOD B YIM BNnjeA 8jgelie/ 1Sl 8y) aiedwo)

‘(=) ubis sjenba pue aq 0} pawnsse S|

1S3 8Y) YIM UOHONIISUI NMOAXOOT @Yl 81| S9ABYSQ UONdNISUl ZNMOJNOOT @Y} usy)
‘POIIIWIO SIJS8 }| 1S8/ UONIPUOD 8y S198l Jey] 8N|eA UBISU0d 8y} pulj Pue 1si| 8yl yoiess

"048Z 0] [enba s119S}40 8y} JI pauIN}al S| JUBISUOD 1S11) 8U) ‘PaSB(0I8Z SI JOSHO "9|qBLEA Ul
pauinial Sl 0JoZ UBY) ‘SJUBISUOD JO Jaquinu ay) uey) Jajealld si 18syo oy} §| '9/qeLE/ pPuodas
8y} Ul 18SH0 8y} 1B 8N[BA JUBISUOD 8Uj} 8101S PUB 18SH0 UB YIIM SJUBISUOD 4O 11| B yBnoiy) o5

pousd dvN
uld MO'1

ajqeuep ‘[{ - - -
anjeA‘} anjep] ‘ejgeueA gdNM00T

a|qeueA ‘[{ - - "eisuoy’}
juejsuoQ] ‘s|qereA dNMOOT
a|qeuen

‘[{- - - wesuoy} ueisuog)]
{1sa1} 198140 ZNMOAMOOT

alqeren ‘[{ - - - esuoy‘}
juejsuo))] 18syo NMOAMO0OT

NOILdIYOS3a

NOILONY.LSNI

(ponuijuoy) suonsuny uj jjing disegdid 92 314Vl

64

(panunuoa)
___|

"sued Xx3021LOId J0 INOHdIT Ul-HINg 8y} YHM }IOM Jou S80p uononiisul siy |
'8/qelie/ Ol SN[eA S) uinjal pue ssaippy 1e INOHdIT elep ul-Hing 8y} ul 8lAg ay) peay

"SjusWeIoUl
STI-01 U1 8q [IM pauINjel 8NJeA BU} UaU) ‘NOIN gOIOIWDId BUl YIM PasN SI JOJe||ioso
ZHIN-b ©] “omiau DY e ul pakejap aq o} [eubis e 1o} palinbal awi} 81Nj0Sqe 8y} 8Insesy
‘8/qeLe/ wopuel-opnasd B YIM 8/qelie/ peo

‘Indino si 1ey} s8joAd Jo Jaquinu ay} saiads 8jo4) daAloe. SI

INMd 83 1eys (gGg 01 0182) $8|9A0 8y} Jo Uonorly By} S108[8S AIng “ZHN ¥ ¥e Buluuni NON
@°MoIWOId e 1o} Buo| sw g sI 8]9A0 yoe3 ‘ui4 uo |eubis parejnpow yipim-asind e indinQ
‘s 0| jo Aluejnuelb e aney |Im pole4 asind

B} UBY} Y002 ZHN- B UM und st NOIN gOIoIWDId dU} §| POLSd U} 10} Uid BU} 8s|nd

s QL
jo Aluejnuelb e aney sjeAlajul swil 8yl ‘NDIN @0°#OIWDId dUl YIM PasN s %00[0 ZHIN- &
J| "@s|nd pajoadxa 8y} Jo 81els 8y} S8edIpul 818]S Ul 10 yipim asind Buiwodul ue ainses|y

'(5G2) 440%0 01 0 Jo abues 8y} Ul SI I [IAUN BnjeA paulnial ay} abueyo [jIm Jey} anjea
B Sl 9/BoS "Joyoeded e 0] palosauuod si suid sy Jo suo uaym Jadim s s1ewonuslod e peay

‘anfeA 8yl UM ssaippy 18isiBal ay) sl
‘8|gelie/ Ul SSalppy, JaisiBal ay) 1e anje) sy uiniey
"SPU0DBSOIOIW POLIA 40} UOHONISUI IXBU B} Bunndexe woly NON g0oIwdld aul dois

'S90p JYN 8l 93]S, 01 NON @oho_EO_n_ 8y} 1nd jou seop SNV
"SPU028SI||IW POLIB 10} UONDNJISUI 1Xau a1 Bunnoaxs woul NDIA @PiowdId ay) dois

"8pow IndinQ ol Ul Ind

‘uoNONIISUI JNNSTY B 81ndaxa
‘a19|dw o9 s Jajpury 1dnuisiul 8y} UBYpA 1eqe] 1e Buiuess Jejpuey idnusiul 8y} o} dwnp

"pasn s uononsul FANSIY e ‘Joyuow

Bngep ay; woly uinjal 0] s8lhq welsAs p)ueq Se paulep aq isnw 8lAq YOV.IS BHNgId
pue pIoM SSIHAAY HNGId Yl ‘SejgeleA oM | ‘paIndaxa si /ageT e welbo.d
Jojiuow Bnge@ 8y} ‘PeXOAUI 8q 0} INOJE SI UOIONIISUl Ue Wi} A19AS ‘PaxOAUI UBYAA

8|qeleA ‘ssaippy Av3ad

d|qeleA ‘9lelS ‘uld JNILOY

S|qelleA INOANVY

81940 ‘AinQg ‘uild NMd

poued ‘uld 1N0SINd

d|qeleA ‘elels ‘uid NISTINd

8|qeleA ‘eeds ‘uld 10d
anfe/ ‘ssaippy IM0d
8|qeleA ‘ssaippy ¥33d
poled SN3SNvd

poled 3SNvd
uld 1Nd1NO

[99e71 OLOS 1dNYYH31LNI NO

[99e7 010 DNd3d NO

65

:SE PauIyep aJe S)d 8y "UONONASUI ZNIYIS BU} O} S|GelBA §G-91
e Buissed Aq spew si uonosies spoyy 18qe7 0y dwnl o} uoinosxe Buisnes poued paiyoads
8U} Ul PaAI9OaI BJEP OU UHIM S|BAJIUI SW-| Ul paloads ag ueo sinoawi indu| jeqeifiied

ay} o1 dwnl [im uoilnoaxa ‘panladal si 81AQ pifeAul ue awi Aue uay) ‘Ja1eweled apoyy ay; ul [uoneoioadg]
pa108|8s S| Ajued UBAT }| "UNLIBAO OU S| 818y} 8INns ayew 0} NDON @0401WDId Y} O} EYep JO {‘leqe noswi] } {‘leqe1Aied}
Indul 8y} [01}U0D 0} PasN SI UIIMO|H “Uld UO S8lAq BJep SNOUOIYIUASE 810W 10 8UO SAI808Y ‘9polN ‘{uldmol4\} uld gNIH3S

aniebaN 0096 0096N

anebaN 0ove 00¥2N

annebapN 002t 002N

annebaN 00€ 00EN

8Allsod 0096 00961

BAINISOd 00¥¢ 00¥cL

BAINISOd 00ck 00ctL

BAI)ISOd 00¢ 00€L

9jels djey pned SPON

:8|gel 8y} Ul paulep SI pue ul4 ey} Jo uoneiado sy}
Ayioeds 0] pesn sI spoyy "paAladal buiaq ejep Aue Jnoyim sessed [eAlslul 1oLl BY) Usym

/8ge7 0} sdwnl uonnoaxa pue SOasW Ul S| dnfeA Jnoawi] Y] “wayi yasyew Buuys Buiwooul [{- - - elqeuep‘}

8y} Jo alAq 1s11y 8yl uaym salAq Buimojjo} ssed Ajuo 1eys siaiiienb 1se} ase selhq /end 8yl a|qeuen]l { - - - enp} {lege

"awl} UnJ e paulap a8q Ued Uld 8yl "Uld UO S81AQ Blep SNOUOIYJUASE 810w 10 BUO SAI908Y ‘noswi]} ‘epoy ‘uid NIH3S
‘apow induj 0} pabueyo

s1)l ‘epow ndinQ ul a1em i JI ‘ejdwexs 104 ‘Uld pauoads sy} Jo uoiouny 8y} 8sIanay uld 3SH3IA3IY

‘uononaisul gNSOD,, 8yl J8ye uononiisul syl 0} uiniey NdN134d

‘[8qe7 Jaye apod ayi 0} sdwnl aindaxa pue alels
[eulbLIO S)I O} pauin}al SI 8lempiey 8y} usy} paiioads si j8geT e J| ‘palndaxa Sem Jajpuey
uononiisul | dNHYEFLNI NO 10 HNFg3d NO 341 J8jje uooniisul 8y} e uoiindsxe alojsay {lege} ANNS3Y

NOILdIYOS3a NOILONYLSNI

(ponusjuoy) suonouny uj jing d1segdid 92 319Vl

66

(penunuoa)

SOND 9AlIsod
SOND SAlISOd
SOND SAlISod
SOND 9AlIsod
JaAlg olels

‘Buo| sie1oeieyd U Buus Jejoeleyo e 1oj Hepn
"slajoeley Jo buLiS pauioads ay) Jof Hepn

'0 J9joeleyd Aq
papua AjreuondQ “Aeuy Ul 8101S pue SsisloeIBeyD U JO Bulls B oAy

sJajoeleyd paniedal # diys

JBA Ul 810}s pue s)bip [ewiospexsH ¢ 01 dn aAlgdoay
1B/ Ul 810]s pue sybip [ewioaq G 03 dn a8y

JeA ul a10}s pue sybip Aieuig 9| 01 dn aAleday

uonelsadQ

0096 00961
00v¥¢ 00¥cL
00ct 00ctL

00g 00gL
ajey pneg epo\
9|qe}

BU] Ul paulep S pue JaALIp INdINo sy} pue ul4 8y} Jo uonelado syl Aloads 0} pasn si spopy
"8I} UNJ 1e pauliep aq ued Ul4 8y ‘Ul Uo S8lAg elep SNOUoJyoUASe 810w 10 BUO PUSS

ukely H1S1IVM
(Bumis,) LIV

o\uleuy H1s

dIMS

ea{y - © "1} X3H
ea{s - "1} 03a
lea{gl - - " Lhug
Jayipoy

:pais|| a1e siayipowy/siayiienb ay| “erep Buiwoou sy} ssedoid pue Jayi 0} pasn
aJe eyl S8|qeLBA UOIBUIISSP pUR Sialipowy/ sialijenb ejep jo Bulis e s uoneoyoads eyl

02 - (pPneg/000‘000°‘ L) = eley
:ejnwulo} 8y} Aq punoy ‘uoneonoads ajel eleq 0-2l

elep 8yl yum pasn aq o} si Aied uens Ji 18S ek
aAiebau si eyep indul Ji 185 4"
pasnun S

uonoun4 g

[{- - -enea‘lenea
] ‘epolN ‘uid 1NOYIS

67

0z — (PNeg/000°000°1) = 8¥ey ‘ejnwiioy dyi Aq punoj ‘uoireoyioads sjel eleq 02l

elep 8yl yum pasn aq o} si Ajued usns 4l 188 €l

aAnebou si erep ndui yi 183 4"

indino uielp uado ‘18s }| "uoieoIoads JaAup urelp uadQ/SOIND Gl

uonoun4 ug

‘se pauyep

aJe S])ig 8y "uononJIsul gNIg3S aul 01 a|qeuen 1g-9| e Buissed Aq apew s| uoios|as apopy

"J910BIBYD 1X8U 8y} 1IN0 Bulpuss alojaq sAejap NDIN @°oIWOId 8y} tey (s7 ul painseaw)

awi} Jo yibus| ayy Ajioads 0] pasn si Jejeweled aoe4 [euondo ay] fage7 o} dwnl o}
uonnoaxa Buisned pouad payioads sy} JoAI881 8Y} UO [0J}UOD MOJ- OU UNM S[eAlajul SW-| [uoireoyoadg]
ul paljoads 8q Ued SINOSWI] "UNJIBAO OU S| 818U} 8INS 8ew 0} NDIN 50401 |d U} O} erep {‘lege noswi] } {‘eoed}
10 Indino 8y} |0JjUOD O} PasN SI UIdMO|H “Uld UO S8lAQ Blep SNOUOIYOUASE 810w JO SUO pusS ‘opo|\ ‘{uidmol4\} uld 21NOY3S

ueig-uedo eAnebeN 0096 0096NO

urelg-uedo aanebeN 00¥Z 00¥eNO

ureig-uedg eAnebeN 00ct 00CENO

ureig-uedo eAnebeN 00€ 00ENO

ureig-usdo dAllisod 0096 009610

ureig-uedo BAllISOd 00¥Z 00¥2lO

ureig-uedQ SAlIsOd 00ct 00¢t10O

ureig-uado BAIlISOd 00g 00€10

SONO @AnebaN 0096 0096N

SOWND eAnefeN 00¥2 00%2N

SOND @AnebaN 00ct 00ZIN

SONO eniebeN 00€ 00EN
NOILdIHOS3a NOILONYLSNI

(panunuog) suoijdung uj jing disegdld 92 319VL

(penunuoa)

‘8|qel 8y} ul pais]|
aJe sanjeA a8y} pue INo payiys ag 0} Si Blep ayl Moy Ayoads 01 pasn si Jayeweled spopyy
8yl (8 sI yneyap ay; ‘payioads jou 4I) pJom Yoes ul In0 PaYIYs 8q O} aJe sjg Auew moy

Ayoads 01 pasn si Jayewelred syg ayl "‘NON @/2IWOId 8U} O INO Blep Jiys AlsnouoiyouAg

%00[0 Buisind Jaye eyep peal ‘1silj g JUeoyIUbIS-1SEaT] 150d8S
300]0 Buis|nd Jaye eyep peal ‘isii 1g uedubis-1SolN 1S0dgSIn
%0010 Buisind e10jeq e1ep peas ‘1siy 1iq Jueoyubis-1sesT 34dEST
%00[0 Buisind e10jeq e1ep pesy ‘Isil 1 UeoyIuBs-1So EISRER)
uonoun4 apoN

"a|qe) ay) Ul

paisi| 84 Sen[eA 8y} pue paiisjsuel) 8 O} SI BJep ay) Moy ajeaipul 0} pasn S| Jajsweled apopy
ayL *(8 S 1Inejep ay ‘paiyoads jou s syg Jl) Ul payiys Ajlenioe aie Jey siiq Jo Jaquinu ay)
Ayoads o} pasn si 1ejoweled syg YL NOIN gOIoIWDId 8ul olul elep Jius Aisnouoiyouls

Buo| sia10eIRYD U BuLls J81oBIBYD B 10} B u\Aely H1S1IVM
sisjoeleyo Jo buuis paiioads eyl 10} Hep (Bums,) LIVM
0 Jajoeleyd Aq papus
Areuondo “Aeuy ul 8101s pue sisjoeieyd u jo Buuis e anieday o\ulely H1S
slajoeleyd panigdal # dijs # dIMS
Jey\ ul a10]s pue sybip [lewiospexay 0} dn A28y ea{y: © IIX3H
1B/ Ul 210}s pue sybIp [ewidap G o} dn aA1908Y rea{s: - " 1}o3a
JBA Ul a10}s pue subip Areuiq 9| 01 dn aAlgoay rep{9lL " - " 1luig
uonesadQ JBIHIPON

:9]g®B} 98U} Ul pajsl| aJe sialipow/sialienb ay| ‘sanjea aaiebau 1oy Juss si joyealpul (—) ubis
B 1By} se1edipul xija1d § 8y} pue elep 8y} 810jaq Juas aq 0l S| 8dA} elep ay} 1eyl ayedipul

01 xiyaid ; ue yum panoads aq ued eiep lewloy indino ay] "eyep Buiobino sy} jewoy

0} pasn ale Jey} sanjeA 82IN0S pue sialipow /siaiiienb eiep jo Buuis e si uoneoyoads syl

[{- - ~elqeuep’}
{sug\} s|jqeuep] ‘epon
‘uid %90|Q ‘uidered 1NOLHIHS

[{- - - elqeuen’} {sug\} ejqeuep]
‘@pOIN ‘UId0ID ‘Uidered NILHIHS

69

‘a|npow 8y} Aq pawopad 8q 0} uoloUN 8Y} IO JBAIBJBI O L —X diIoads
B JO Jaquinu 8y} 8q Jayus ued 8ponAay] syl ‘d ubnoiyl ¥ S8INPoIN 0 L—X 8} UO 18S 8po)
8SNoH 8y} 0} Spuodsaliod pue G| pue (USBMISq JOquNU B S| 8P0DSSNOH “I0iSISal V-1
e yum dn pajnd aqg pjnoys pue indul Ue S| Ul4oJ87 8yl "SBJIASP J8Ylo O} Blep 0 |—X Puas

‘panes aq ||Im apo) A8y ay} Ajuo uayy

‘8zIs ul siq BIe S1 9/qeLEA 1S1l U} §| "POAES 8] ||IM 8p0D A8 BU} pue apoY 8SnoH dui
U1oq usy} ‘siiq 9| SI UOHEBUNSSP BIEP B|GBLEA 181} BU} §| "[eAsiul payioads syt Aq paaiads)
S| ejep ou Ji joge7 0} dwnl 0} uoiIN2aXd SSNED [|IM (S[eAIBIUI SW-EE'8 Ul paijoads) jnoswil |
Jeuondo ay] siolsisal (-2 yum dn pajind 8q pinoys uidolsz pue uidejeg uiog ‘feubis Dy
indui 8y} Jo buISSoID 0487 BY) 198)8p O} PASN S| UIJ0J87 "SBIIASP (| —X WO} Blep aAIe0aY

"$90INAP XXXJDZ +Old dU} Ul NOHdIT ul-)ing

U} YIM 3I0M JOU [|IM UORONASUI SIYL "NOHJIT BIep Ul-}ing 8y} ojul anjeA a1Aq au} sl
"019Z 0} paleNn[eAd Sl puos) usym dooj sy} SHIXe UoNdaXT “aNfeA 0J8ZUoU B suinjal
UOIIPUOD PUOD B} BJIUM SuBWIBIEIS GNIM Ul PUB FTIHAM SU) USSMIS] 9POD BU} 8INd8XT

‘uid payoads auyj jo anjea Indino ay; 8|660] "sajgqeueA om] sy} ul senjea ay} abueyoxgy
‘apowl

dagjs ol Ind j0ou sI NDON @%oIWoId 8yl -dooj ssejpus ue ojur NON @2IWOId 8y} 82e|d
SjuswaIoul SW-g| ul payoads si uoieing “(NDIN @2olwold

ZHW-t B Ul ZHY 01) 1s8ybly 8y} si /| 810U pue 8uo} pijeA 1s8mo| 8yl st (NOW @%dlWoId

ZHIN-¥ B 10} ZH G'8/) | SION ' ©SIOU BHYM, BIE GGZ O} 8Z| SSION PUE dDUBJIS SI) SION Uld
8y} uo (auny ajdwis B 81810 0} PAsSN 8g UBD YdIym) SuoieInp pue sauol jo buuis e indinQ

"SPU0JBS POLIS 10} BPOW GBSIS OJuI NOIN ORI 8Ul INd

[{- - enep}
{readey\} spopAey\epo)
8snoH] ‘uidolaz ‘uideled 1NOX

[{- - - elqeuep’} sjqeuep] {‘|ege
‘Inoswi] } ‘uidolaz ‘uidereq NIX

an[eA ‘ssaippy JLIHM
aN3IM: PUod JF1IHM
uld

JT1990L 8|qeueA ‘e|qeue) dVMS

dOl1S

[{- - - uoneinq ‘eloN‘}
uonein@ ‘@10N] ‘uild ANNOS

pousd 43371S

1511} 1q JueDlIUBIS-1SOIN 1SHIJISIN
11y 1q Jueoyiubig-isean 1SHId9dST
uonoun4 apo

NOILdIHOS3d NOILONYHLSNI

(ponuijuog) suonoung uj jjing disegdid 92 31aV.L

70

5338(00 U mojaq 40 Jeqd a3 5,33alq0
UE Ul paie(dsip 1xa] AL s1as/suinay
uoijdeq
[« 1 It
PIos - 0 ELEE
usd Adoo - £1 PO
and) XOGID4U0 D
ET s|ou3uoTd))
U4
s|geas - 2 a43siapiog
40000008HE [J0joZEg|
asjed MEIPEHOINY|
ac-1 aaueeaddy)
- TULIog [EIT=y
_ _umN_Lommumu_ Jageyd)y
= oy ~...._._au__

{Tunod) ey T3
suad =l
(1323(04d) 1323104d §F -

oEd

wa)sAs Juawdojanap oiseg |ensip |} 2inbig

Juio | w
(m)
[uio4] puoq - [joaloid "=

5
HFLESEDPER" I co|lwBs Y A R-T-G|

009< X 002k i+

disH wopuis SUl-PPY 5|00f wedbelg Adah uny Ongag jewdidd joslodd main 1p3 9

[ubisap] 21se g [ENS1A JOs0IDIY - |J0alolg ‘5

71

72

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

Visual Basic applications are built around The Dialog Box Editor desktop. When appli-
cation development is started, Visual Basic provides you with the initial dialog box of your
application (Fig. 12).

From here, Dialog Resources are selected from the Too/Box and placed upon the dialog.

Once the dialog box is designed and looks the way you want it to, code development can
begin. The easiest way to create the application code is by double clicking on the control
in the Dialog Box Editor and a subroutine prototype will appear and allows code to be
added. In Fig. 13, I have clicked on the Quit button to prompt Visual Basic to produce the:

Private Sub Command2_Click()
End Sub

code. Once this was done, I entered the comment and statement:
© “Quit” CommandButton
End

Control attributes (also known as properties) can be set globally from the integrated de-
velopment environment or from within the event handlers. The event handler’s code is
written in pretty standard Microsoft BASIC. Once the handler prototypes are created by
Visual Basic, it is up to the application developer to add the response code for the applica-
tion. Visual Basic provides a large number of built-in functions, including trigonometry,
logarithms, and the ability to interface with the file system and dialog controls.

Variables in Visual Basic are typically “integer,” which is to say they are 16 bit values in the
ranges —32768 to +32767. Thirty-two bit integer variables can be specified by declaring the
variable with a “Dim” statement and type “Long.” One important thing about variables is
that they are local to the event routine they are used in, unless they are declared globally in
the General Module, which executes at the beginning of the application and is not specific to
any controls.

A number of controls are basic to Visual Basic. Others are available for downloading or
purchasing off the Internet. These can make your Visual Basic applications very impres-
sive and add a lot of “pizzazz.” The default controls are listed in Table 27.

A number of controls cannot be activated with a left button click and cannot be “seen”
on the application’s form. The one that is used the most is the Timer. This control causes
an event after a set period of microseconds. This control can be set within the dialog edi-
tor or modified within the application itself. The Timer can provide many different ad-
vanced functions without requiring any interrupt interfaces.

THE C LANGUAGE

For modern systems, C is the programming language of choice because it is available for a
wide range of systems and processors (including the PICmicro® MCU). This ubiquity requires
anyone who is planning on developing application for processing systems to have at least a
passing knowledge of the language. C is often referred to as the “universal assembly language”
because it is designed in such a way that it can access a system’s lowest levels efficiently.

The book presents “pseudo-code” in C format to help explain the operation of the hard-
ware without getting bogged down in the details of assembly language.

dopjsop aiseq |ensip = g} 24nbig

MOPUIAA saxog bofelqg/s|l4 ypm X0g|00]
IN0ABT W04 dopisaq, |0Ju0D

IR0 LE Ajjusp
£ 8P0D LI pEST LEU S SUA0E-
[2oy

[aa00occH: [l 1012241

ani_ (En:0F
B 1P vEA]
>>o U C _\/\’ 208 0 Q5T
Ued Adus -y UL auEer)
230,347 ma e
S04l
Sallladold -1
" By apacg|
201001] Iojece-2eg] i
_ o.‘_u.c OO ‘\ o il simul BAT=ON HASH aeTg
qe- EXNEYEhe Y 7 - Tu
ring

WERT (.. = @orzden- i) pmesmon) 3o
=e13
T oW
T o= Ty
ALY oK TIOM T1 - -C
WML (0w - TATATE3" 1T) Spmemng) 11
R oL N =T I3F

o-°[

E

£

& 1 = [

MOPUIAA
Aejdsig -
Il [|ammamas

=
B

HAe , uEw = wctades 1XSPUI)TPWEnass
TEYL (a4 W = WOTIAES* 1£2PUI) TPURMIS)) I1

i il

(61 azg
1I=h=97T] 97 XSPUIINATTY [PTELmon ong 339AT I

-
)

BE T e ffaor

S = A
(dqa=ey 30y 3p) paaafoay @& 0 [sinne _.n_ue_ = " u.._nuw_ Y
_ =laa BEs [2poa) (uioy - |193l01d i | o

L1220, | - j2elog |

g 50853 302 it

=
> G TR ERN A oo was | Mal -8

_ del MmopLly, AI-ppy Sec] wesbEl] daeTh urg Bnged gewi@g el may 3p3 eE

leg|oo]

|ubszap] MR [ensiy YosoImp - [123l0),] 7,

73

*ud|
530alqo ue Moj2q Ao Jeq 21 539900
ue Ul pade|dsip 3xa] auyy s3a55uIn3ay

uoipde]

[« duacsuescw oy

L pageU)
|enuEly - 0 apojyBe.d]
(auon) [law) (a1=3T5|
(auon) 24N72guUrn
(aUOh] =nyoIdpa|qeEsl]
252 Aneyag
anJ | UoKEpIEASasnED)
N
as|eq [ERICR
JooooooaHs [Iojo3aEy
az-1 oueeaddy)
- ZpUEWWoD (awep)

_ _umN_Bmmumu_ Jjageydly
[~ uoungpueuwod zpuewwod|

{Tuod) Tunay -
suing £
(1322(04d) 132304 6F -

dn jas [041U09 x0q Bojelp diseg |jensin €} 94nbi4

WO INGPUEMI0D 3 T0d,, '
(12T ZpUBMMICD g 33BATId

me pug

uolingpuesos ,dT3H, |
[JH2TTD THWEWNOD Mg SIBATI]

xu__u_ _” LPUeLWLILIO D)

ojEa
|

(2po]) Lwio - [waloid Ki

ar= [uio4) puno4 - poalory ™

__m.._mcmw
>
e | FE ST ER " (v Wwasy A L-0-4|

deH topuifd, suI-ppY sool wesbEl] Aseho uny Bnga jewidy paeloid wmai Ip3 9)g

[ubisap] Jiseq [ensiy Yosoldiy - |joalorg 5

74

INTRODUCTION TO PROGRAMMING

75

TABLE 27 Visual Basic “Controls”

CONTROL DESCRIPTION

Pull Downs Selected from the “Menu Editor” icon on the “ToolBar”

PictureBox Display Bitmaps and other graphic files on the Dialog Box

Label Put Text in the Dialog Box

TextBox Input/Output Text Box

Frame Put a Frame around Resources

CommandButton Button for Code Operation

CheckBox For Checking Multiple Selections

OptionButton Also known as the “Radio Button”. For Checking one
selection for a list of Multiple options

ComboBox Select or Enter Test in a Box/List

ListBox List Data (with User controlled Scrolling)

HScrollBar Provide Horizontal Scrolling in a Text or Graphic Output
Control

VscrollBar Provide Vertical Scrolling in a Text or Graphic Output Control

Timer Cause a periodic interrupt

DriveListBox Select a Drive for File I/O

DirListBox Select a Subdirectory for File /0O on a Specific Drive

FileListBox Display Files for a Specific Subdirectory on a Specific Drive

Shape Put a Graphics Shape on the Dialog Box

Line Draw a Line on the Dialog Box

Image Display an Image File on the Dialog Box

OLE Insert OLE Objects to the Dialog

Pseudo-code is a term for code which is designed to illustrate the operation of an algo-
rithm or hardware interfaces. My choice of using C format means that you should have at
least a passing understanding of the language. This section will quickly give you an un-
derstanding of how C is designed and how statements are defined.

Throughout the book, the code examples will either in assembly language or C-styled

assembly language.

Declarations Constant declaration:

const int Label

Variable declaration:

type Label [=Valuel;

Value;

76 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

Value is an optional initialization constant. Where #ype is shown in Table 28.

Notice that int is defined as the “word size” of the processor/operating system. For PCs,
an int can be a word (16 Bits) or a double word (32 bits).

There might also be other basic types defined in the language implementation. Single-
dimensional arrays are declared using the form:

type Label[Size] [={ Initialization Values..}];

Notice that the array Size is enclosed within square brackets (/ and /) and should not be
confused with the optional /nitialization Values.
Strings are defined as single-dimensional ASCIIZ arrays:

char String[17] = “This is a String”;

where the last character is an ASCII NUL.
Strings can also be defined as pointers to characters:

char *String = “This is a String”;

For the PICmicro® MCU and other Harvard-architected processors, the text data could be
written into data space when the application first starts up as part of the language’s initial-
ization.

Multidimensional arrays are defined with each dimension separately identified within
square brackets (/ and /):

int ThreeDSpacel[32 J[32][32 1;

Array dimensions must be specified unless the variable is a pointer to a single-dimensional
array. Pointers are declared with the * character after the fype:

char * String = “This is a String”;
Accessing the address of the pointer in memory is accomplished using the & character:
StringAddr = &String;

Accessing the address of a specific element in a string is accomplished using the & char-
acter and a string array element:

StringStart = &Stringln];

TABLE 28 “C” Data Types

char long

int
unsigned int
float

INTRODUCTION TO PROGRAMMING

77

In the PC, I recommended that “far” (32 bit) pointers be always used with absolute off-
set:segment addresses within the PC memory space to avoid problems with changing
segments due to different “memory models.”

The variable’s type can be overridden by placing the new type in front of the variable in
brackets:

(Tong) StringAddr = 0x0123450000;
Statements Application start:

main(envp)
char *envp;
{ // Application Code

// Application Code
} // End Application

Function format:

Return_Type Function(Type Parameter [, Type Parameter..])
{ // Function Start

// Function Code
return value;

} // End Function

Function prototype:

Return_Type Function(Type Parameter [, Type Parameter..]);

Expression:

[(..] Variable | Constant [Operator [(..] Variable | Constant 1[)..1]
Assignment Statement:

Variable = Expression;

C conditional statements consist of if, 7, while, do, for, and switch. The if statement is
defined as:

if (Statement)

; | 1 Assignment Statement | Conditional Statement..} | Assignment
Statement | Conditional Statement
[else ;| {Assignment Statement | Conditional Statement..} |

Assignment Statement | Conditional Statement]

The ? : statement evaluates the statement (normally, a comparison) and if not equal to
zero, execute the first statement, otherwise execute the statement after the :

Statement ? Assignment Statement | Conditional Statement : Assignment
Statement | Conditional Statement

78 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

The while statement is added to the application following the definition:

while (Statement) ; | { Assignment Statement | Conditional
Statement.. } | Assignment Statement | Conditional Statement

The for statement is defined as:

for (initialization (Assignment) Statement; Conditional Statement;
Loop Expression (Increment) Statement)
{ Assignment Statement | Conditional Statement..} | Assignment
Statement | Conditional Statement

To jump out of a currently executing loop, break statement:
break;

is used.

The continue statement skips over remaining code in a loop and jumps directly to the
loop condition (for use with while, for, and do/while loops). The format of the statement
is:

continue;
for looping until a condition is true, the do/while statement is used:

do
Assignment Statement | Conditional Statement..

while (Expression);
to conditionally execute according to a value, the switch statement is used:

switch(Expression) {

case Value: // Execute if “Statement” == “Value”
[Assignment Statement | Conditional Statement..]
[break;]

default: // 1f no “case” Statements are True

[Assignment Statement | Conditional Statement..]
b // End switch

Finally, the goto Label statement is used to jump to a specific address:

goto Label;
Label:

To return a value from a function, the return statement is used:
return Statement;
Operators Various operators are listed in Tables 29 through 31.

Directives All directives start with # and are executed before the code is compiled
(Table 32). The words in Table 33 cannot be used in C applications as labels.

INTRODUCTION TO PROGRAMMING 79

TABLE 29 “C” Statement Operators

OPERATOR OPERATION

! Logical Negation

A Bitwise Negation
&& Logical AND
& Bitwise AND, Address
Il Logical OR
| Bitwise OR
A Bitwise XOR
+ Addition
Sahs Increment

= Subtraction, Negation

== Decrement
* Multiplication, Indirection
/ Division
% Modulus
== Equals
1= Not Equals
< Less Than
<= Less Than or Equals To
<< Shift Left
> Greater Than
>= Greater Than or Equals To
>> Shift Right

80

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 30 “C” Compound Assignment Statement Operators

OPERATOR OPERATION
&= AND with the Variable and Store Result in the Variable
1= OR with the Variable and Store Result in the Variable
A= XOR with the Variable and Store Result in the Variable
+= Add to the Variable
—= Subtract from the Variable
*= Multiply to the Variable
/= Divide from the Variable
Yo= Get the Modulus and Store in the Variable
<<= Shift Left and Store in the Variable
>>= Shift Right and Store in the Variable
I ——
OPERATORS PRIORITY TYPE
Of[1.—> Highest Expression Evaluation
—~1&*++ —— Unary Operators
*1 % Multiplicative
= Additive
<< >> Shifting
<<=>=> Comparison
=== Comparison
& Bitwise AND
A Bitwise XOR
I Bitwise OR
&& Logical AND
Il Logical OR
?: Conditional Execution
=&=|=A=+= —=*= [=%=>>= Assignments
<< =
, Lowest Sequential Evaluation

INTRODUCTION TO PROGRAMMING

81

TABLE E-32 “C” Directives

DIRECTIVE

FUNCTION

#define Label
[(Parameters)] Text

#undefine Label

#include “File” | <File>

#error Text

#if Condition

#ifdef Label

#ifndef Label

#elif Condition

#else

#endif
#pragma String

Define a Label that will be replaced with Text when it is
found in the code. If Parameters are specified, then
replace them in the code, similar to a macro.

Erase the defined Label and Textin memory.

Load the Specified File in line to the Text. When < >
encloses the filename, then the file is found using the
INCLUDE environment path Variable. If “” encloses the
filename, then the file in the current directory is searched
before checking the INCLUDE path.

Force the error listed in Text

If the Condition is true, then Compile the following code to
#elif, #else, or #endif. If the Condition is false, then ignore
the following code to #elif, #else, or #endlf.

If the #define label exists, then Compile the following
code. #elif, #else, and #endif work as expected with #if.

If the #define label does not exist, then compile the
following code. #elif, #else, and #endif work as expected
with #if.

This directive works as an #else #if to avoid lengthy
nested #if s. If the previous condition was false, checks
the condition.

Placed after #if or #elif and toggles the current compile
condition. If the current compile condition was false, after
#else, it will be true. If the current compile condition was
true, after #else, it will be false.

Used to end an #if, #elif, #else, #ifdef, or #ifndef directive.

This is a compiler dependent directive with different
strings required for different situations.

82

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 33 “C” Reserved Words

break
case
continue
default
do
else
for
goto

if
return
switch

while
N

Backslash characters Table 34 shows a list of C backslash characters cross refer-
enced to ASCII codes.

Common C functions Common C functions as defined by Kernighan and Ritchie are
given in Table 35.

TABLE 34 “C” Backslash Characters to ASCII Codes Cross Reference

STRING ASCII CHARACTER

\r 0x00D Carriage Return (“CR”)
\n 0x00A Line Feed (“LF”)

\f 0x00C Form Feed (“FF”)

\b 0x008 Backspace (“BS”)

\t 0x009 Horizontal Tab (“HT”)
\v 0x00B Vertical Tab (“VT7)

\a 0x007 Bell (“BEL”)

\ 0x027 Single Quote (“*”)

\’ 0x022 Double Quote (“””)

\\ 0x05C Backslash (“\”)

\ddd N/A Octal Number

\xddd 0x0dd Hexadecimal Character

INTRODUCTION TO PROGRAMMING 83

TABLE 35 Standard “C” Built in Functions

FUNCTION OPERATION

int getchar (void) Get one Character from “Standard Input” (the Keyboard). If
no Character available, then wait for it.

int putchar (int) Output one Character to the “Standard Output” (the Screen).

int printf (char Output the “Const” String Text. “Escape

*Const[,arg. . .]) Sequence” Characters for Output are embedded in the

“Const” String Text. Different Data Outputs are defined using
the “Conversion Characters”:

%d, %i — Decimal Integer
%0 — Octal Integer

%X, %X — Hex Integer (with upper or lower case values). No
leading “0x” character String Output

%u — Unsigned Integer

%c — Single ASCII Character

%s — ASCIIZ String

%f — Floating Point

%ite, %H#E — Floating Point with the precision specified by “#”
%49, %G — Floating Point

%p — Pointer

%% — Print “%” Character

Different C Implementations will have different “printf”

parameters.
int scanf (char *Const, Provide Formatted Input from the user. The “Const” ASCIIZ
arg [, arg. . .]) String is used as a “Prompt” for the user. Note that the input

parameters are always pointers. “Conversion Characters” are
similar to “printf”:

%d — Decimal Integer

%i — Integer. In Octal if leading “0” or hex if leading “Ox” or “0X”
%0 — Octal Integer (Leading “0” Not Required)

%x — Hex Integer (Leading “Ox” or “0X” Not Required)

%c — Single Character

%s — ASCIIZ String of Characters. When Saved, a NULL
character is put at the end of the String

%e, %f, %g — Floating Point Value with optional sign,
decimal point and exponent

%% — Display “%” character in prompt
I ——
(continued)

84 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 35 Standard “C” Built in Functions (Continued)

FUNCTION OPERATION
handle fopen (char *mode) Open File and Return Handle (or NULL for *FileName,
Error).

“mode” is a String consisting of the optional characters:
r — Open File for Reading

w — Open File for Writing

a — Open File for Appending to Existing Files

Some systems handle “Text” and “Binary” files.
A “Text” file has the CR/LF characters represented as a
single CR. A “Binary” file does not delete any characters.

int fclose (handle) Close the File.

int getc (handle) Receive data from a file one character at a time. If at the
end of an input file, then “EOF” is returned.

int putc (handle, char) Output data to a file one character at a time. Error is
indicated by “EOF” returned.

int fprintf (handle, char Output String of Information to a File. The same “Conversion

*Const[,arg. . .) Characters” and arguments as “printf” are used.

int fscanf (handle, char Input and Process String of Information from a File. The

*Const,arg[,arg. . .]) same “Conversion Characters” and arguments as “scanf”
are used.

int fgets (char *Line, int Get the ASCIIZ String from the file.

LineLength, handle)

int fputs (char *line, Output an ASCIIZ String to a file.

handle)

strcat (Old, Append) Put ASCIIZ “Append” String on the end of the “Old” ASCIIZ
String.

strncat (Old, Append, #) Put “#” of characters from “Append” on the end of the “Old”
ASCIIZ String.

int stremp (String1, String2) Compare two ASCIIZ Strings. Zero is returned for match,
negative for “String1” < “String2” and positive for “String1”
> “String2”.

int strncmp (String1, Compare two ASCIIZ Strings for “#” characters.

String2, #) Zero is returned for match, negative for “String1” < “String2”
and positive for “String1” > “String2”.

strcpy (String1, String2) Copy the Contents of ASCIIZ “String2” into “String1”.

strncpy (String1, Strint2, #) Copy “#” Characters from “String2” into “String1”.

INTRODUCTION TO PROGRAMMING

85

TABLE 35 Standard “C” Built in Functions (Continued)

FUNCTION

OPERATION

strlen (String)

system (String)

*malloc (size)

*calloc (#, size)

free (*)

float sin (angle)
float cos (angle)
float atan2 (y, x)
float exp (x)
float log (x)

float log10 (x)
float pow (%, y)
float sqrt (x)
float fabs (x)
float frand ()

int isalpha (char)
int isupper (char)
int islower (char)
int isdigit (char)

int isalnum (char)

int isspace (char)

int toupper (char)

int tolower (char)

int strchr (String, char)

int strrchr (String, char)

Return the length of ASCIIZ Character “String”.

Return the Position of the first “char” in the ASCIIZ
“String”.

Return the Position of the last “char’ in the ASCIIZ
“String”.

Executes the System Command “String”.

Allocate the Specified Number of Bytes of Memory.

If insufficient space available, return NUL.

Allocate Memory for the specified “#” of data
elements of “size”.

Free the Memory.

Find the “Sine” of the “angle” (which in Radians).
Find the “Cosine” of the “angle” (which in Radians).
Find the “Arctangent” of the “X” and “Y” in Radians.
Calculate the natural exponent.

Calculate the natural logarithm.

Calculate the base 10 logarithm.

Calculate “x” to the power “y”.

Calculate the Square Root of “x”.

Calculate the Absolute Value of “x”.

Get a Random Number.

Return Non-Zero if Character is “a”™—"z” or “A™—Z".
Return Non-Zero if Character is “A™—“Z”.

Return Non-Zero if Character is “a”-“z”.

Return Non-Zero if Character is “0"—“9”.

Return Non-Zero if Character is “a™“z", “A*™—“Z”"
OI’ “O!l_“gl!)

Return Non-Zero if Character is “ “, HT, LF, CR,
FF or VT.

Convert the Character to Upper Case.

Convert the Character to Lower Case.

86 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 36 Functions Added To Standard “C” For The PICmicro® Mcu

FUNCTION OPERATION

inp, outp Provide method for directly accessing system registers.

Serln, SerOut Serial /0O functions.

PICmicro® MCU enhancement functions Useful Functions in PICmicro® MCU
C implementations are shown in Table 36.

Assembly Language Programming

Assembly-language programming is the process of creating a series of machine instruc-
tions (which are normally referred to as just instructions), which will perform a useful
task. Assembly-language programming is often perceived as the most difficult method of
programming and also the most efficient.

I have to disagree with both of these statements, once you are familiar with a processor
architecture and its instructions assembly-language programming is not that much more
difficult that high-level language programming. As for the efficiency issue, if an
application is not properly designed or the programmer doesn’t know how to take advan-
tage of the architecture, it doesn’t make any difference how it is programmed. Assembly
language makes it very difficult to implement efficiently.

In writing about assembly language, I always have to remember not to put down things
like “visualize data flows” or “mentally twist the requirements to optimize the application.”

Although I heartily believe that getting into the right “head space” for writing assembly-
language code is necessary, I hope I have not left you with the impression that I write code
in a darkened room, with sitar music playing on an eight-track and incense burning in the air.

Just to set the record straight, I converted to CDs years ago.

Although also wanting you to work at achieving the proper mental perspective, I want
to also emphasize that assembly-language programming should be initially approached
from a structured-language perspective. The application code should be designed using the
same basic rules and concepts that I have presented in the previous sections of this appen-
dix. By using these concepts, an application can be designed that is based on these concepts
by simply converting these concepts into the appropriate assembly-language statements.
As you become more familiar with the processor you are working with, you can look for
opportunities to optimize the your application code by taking advantage of the processor’s
architecture and avoiding redundant instructions or using advanced instructions.

Writing assembly-language applications based on the basic concepts presented earlier
in this appendix requires a fairly complete understanding of the processor and how the
different instructions execute in it. This book provides two different references to the
PICmicro® MCU’s instructions, one which is a simple one- to four-line pseudo-code
representation of how the instruction executes. The second tool presented is a block
diagram of the processor with the datapaths used by the instruction marked on it. The
PICmicro® MCU is well suited to the graphical method of application software depiction.
With the small instruction set, keeping this visual tool handy is not unreasonable. As you
gain more experience with the PICmicro® MCU, you will rely on these tools less and less.

INTRODUCTION TO PROGRAMMING

87

Step 1: Memory
Accumulator =B
Accumulator <—I_ A
B
Step 2: Memory

A = Accumulator

A
Accumulator —I_’

operation

The basic operation of any processor is moving data. In some processors, this can be
accomplished in one step without any intermediate stops for the data. For most processors,
this isn’t available and data has to be stored temporarily in an accumulator (known as the
w register in the PICmicro® MCU).

To implement the statement:

A=21B

The data will first take the path from memory into the accumulator and then from the ac-
cumulator to the destination. This is shown graphically in Fig. 14.
And would be implemented using the two pseudo-instructions:

B
A

MovAcc B ; Accumulator
StorAcc A ; Accumulator

The accumulator is a register used to temporarily save the results of a move or arith-
metic or bitwise operation. Some processors (such as the Intel 8086 used in the PC) have
multiple registers available for this function, but many (including the PICmicro® MCU)
do not. For processors that only have one accumulator, you will have to keep saving the
contents of the accumulator before overwriting it. This is known as a context register and
is very important for handling interrupts.

Five basic addressing modes are available in most processors. When a register is loaded
with a constant (or a literal), the term used is immediate addressing. When data is passed
between registers (and not memory), it is known as register addressing or implicit ad-
dressing. Loading a register or saving its contents to a variable is known as direct ad-
dressing. Array variable accesses use array addressing or indirect addressing while
passing data to and from the stack is known as stack addressing. Each of these different
modes is best suited for different applications.

Table 37 lists the different addressing modes and how they work.

The PICmicro® MCU only has the Immediate, Direct, and Index” data addressing
modes available to it. Chapter 3 covers how these addressing modes work with the specific
PICmicro® MCU registers and instructions in more detail. Elsewhere, the book shows
how data stacks can be simulated in the PICmicro® MCU.

The accumulator is used to store the results from arithmetic and bitwise operations. For
example, implementing the arithmetic assignment statement:

A= B + 47

B Figure 14 Assignment statement

88 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

TABLE 37 Assembly Language Addressing Modes

MODE EXAMPLE COMMENTS

Immediate Register = Constant Place a constant in a register. Cannot
write to a constant.

Register RegisterA = RegisterB Pass data between Registers without
affecting memory.

Direct Memory = Register | Pass the contents of a Register or a

Constant Constant to a memory location.
Array Register = Array [Index] Pass data to and from an Array

Variable using a specific index.

Stack Register = Array [Index] Store Data on a “LIFO” Memory.
Index = Index + 1
___|

using a fictional processor (which has an ALU to process data), this statement could oper-
ate as shown in Fig. 15.

During bitwise and arithmetic operations, the STATUS register is updated with the re-
sults of the operation. Normally, three flags are used to record the results of the arithmetic
operation. These flags are used to respond to the conditions of an operation and should be
saved when execution temporarily changes (during an interrupt or subroutine call). This
makes STATUS one of the context registers, along with the accumulator.

Step 1: Memory

Accumulator = B

Accumulator 4—| A
447]

Step 2: L 4 B \ 4

Accumulator = ALU Accumulator

Accumulator + 47
Accumulator

Step 3: S Memory

A = Accumulator

A
Accumulator —I_’]

Figure 15 Expression statement operation

INTRODUCTION TO PROGRAMMING 89

The Zero bit is probably the flag you will use the most often when you start developing
your own PICmicro® MCU assembly-language applications. This bit, or flag is set when
the results are equal to zero. For example, using the code:

MovAcc {47 ; Accumulator = 0x02F
AndAcc #15 ; Accumulator = Accumulator & 0xO00F
; = 0x02F & 0x00F
; = 0x00F
; Zero Flag is Reset
MovAcc #47 ; Accumulator 0x02F
Accumulator + -47

AddAcc #0x0D1 ; Accumulator

; 0x02F + 0x0D1
; 0x0100 (actually 0x000 Stored)
; Zero Flag is Set

In the first example, the result is not equal to zero so that the Zero bit in the STATUS
register is loaded with 0 or is reset. In the second example, when a number is added to the
negative of itself the result stored in the accumulator is 0x000. The ninth bit of the result
is not stored in the accumulator, but the Carry flag. In this case, the Zero bit is loaded with
a I or is set. To summarize, the Zero bit is set if the result loaded back into the accumula-
tor is equal to zero.

In the second example, 0xOD1 is the two’s complement representation of —47, as
explained earlier in this appendix. When this is added to the positive value, the result is
256 decimal or 0x0100. Because only the least-significant eight bits of the result are saved,
the accumulator is loaded with zero and the Zero bit of the STATUS register is set.

Although the Zero flag will be used as you start assembly-language programming, you
will find that the Carry bit of the STATUS register will become more useful. Carry is gen-
erated (and used) by addition and subtraction, as well as bit-shift instructions. Carry is also
often used as an Error flag for subroutines in many applications used in processors other
than the PICmicro® MCU. The Carry flag was used in the IBM PC for returning the sta-
tus of BIOS functions and many people continue to use this convention. The PICmicro®
MCU is particularly adept at handling and testing for bit conditions. This ability makes the
use of the Carry flag for returning error information redundant and limits the usefulness of
the Carry flag.

For addition and subtraction, the Carry flag is set when the result overflows to the next
highest byte. In the previous example pseudo-assembler code, the result stored in the
accumulator of 47 and —47 was zero, but the actual result was 0x0100. In this example, after
the AddAcc instruction, both the Zero and Carry bits of the STATUS register will be set.

The Carry flag is often used for loading in and storing data during shift and rotate in-
structions. These instructions are often confused because they are very similar, as can be
seen in Figs. 16 and 17. The differences lie in whether or not the most-significant bit is
shifted out or is used as an input to the shift.

This probably makes it more confusing, but the two cases can be shown graphically, the
first is the shift, which looks like Figure 16:

Figure 16 Data shift operation

90

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

Figure 17 Data rotate operation

I tend to call this operation a shift because data is leaving the shifted register and new
data is being loaded in. A rotate operation is shown in Fig. 17.

In the rotate case, data is never lost. Shift instructions can be used for a variety of tasks and
can help out in making an application more efficient. Throughout the book, I use the PICmi-
cro® MCU’s shift instructions (which are called Rotate instructions by Microchip) for en-
hancing the application’s execution in ways that I think you will find surprising.

The Digit Carry flag is similar to the Carry flag, except that it works at the least-signifi-
cant nybble level instead of at the least-significant byte level. The Digit Carry (also known
as the Auxiliary flag in some processors) is set after an addition or subtraction operation in
which the lower nybble affects the upper nybble of the result. The name Digit Carry comes
from the idea that each byte is broken up into two hex digits.

An example of how the Digit Carry works is:

0x00A
Accumulator + 9
; 0x00A + 0x009

; 0x013

; Carry, Zero Flag is Reset

; Digit Carry Flag is Set

MovAcc #10 ; Accumulator
AddAcc #0x009 ; Accumulator

The lower nybble result of the operation above is actually 0x013, which cannot be
stored in the four bits of the nybble. 3 is stored in the nybble and the upper nybble is in-
cremented by one (which is the Digit Carry). In this example, the operation of the Digit
Carry bit is quite obvious, in situations where the upper nybble is not zero, the action of
the Digit Carry flag can be more subtle and difficult to observe.

The Digit Carry flag is primarily used for Binary Code Decimal (BCD) applications in
which the result of an add/subtract operation has to be converted back to BCD format.

For example, when adding 37 and 24 as BCD, the result of a straight addition is 0x05B,
which is not the BCD result 61 expected. To convert the result, the Digit Carry flags have
to be checked. It is set, then 10 could be subtracted from the lower nybble’s result. If it is
not set, then if the value in the lower nybble is greater than 9, then 10 should be subtracted
from it and the upper nybble incremented (0x010 added to the result).

Although the previous paragraph is just about impossible to understand, I could write it
out using C pseudo-code as:

IntBCDAdd(A, B) {

int Result = A + B; // Do a Straight Addition
if (Digit Carry == 1) // 1f the DC is Set, Subtract 10 from
Result = Result + 6; // the Lower Nybble while keeping the
else // Higher Nybble at the Same Value.

if ((Result & 0x00F) >9) // 1f the Lower Nybble is 10 or greater,

INTRODUCTION TO PROGRAMMING 91

Result = Result + 6; // Subtract 10 from the Lower Nybble
// and Increment the Higher Nybble.
return Result;

} // End IntBCDAdd

This function probably makes less sense than the written description, but by working
through the code, you should get an idea of how the BCD addition works. In the code, no-
tice that I have recognized that taking 10 away from the lower nybble while keeping the
upper nybble at the same value is the same as simply adding six to it (to get the base 10 re-
sult) when the Digit Carry flag is set. Coincidentally, adding six is also the same as incre-
menting the upper nybble and taking 10 away from the lower nybble result when the result
is greater than 9, but the Digit Carry flag is not set.

I feel like I have gone somewhat out into left field in trying to explain how the Digit
Carry flag can be used in applications. The STATUS register’s Digit Carry bit can be best
summarized as initially seeming like a fifth wheel, but can actually help make some oper-
ations easier to implement, as is shown in this example and some code examples given
elsewhere in the book.

The Carry, Digit Carry, and Zero flags are the only STATUS flags available within the
low-end and mid-range PICmicro® MCUs. Other processors (including the PIC17Cxx
and PIC18Cxx) have additional flags to help understand what the result of an operation ac-
tually is. Some processors STATUS registers have explicit Negative and Overflow flags,
which indicate if a result is negative or if it is an invalid two’s complement number, re-
spectively. Other flags might store the parity of the result. These features can be simulated
within any processor, their inclusion is meant to simplify arithmetic operations and avoid
the need to develop software routines to determine these conditions.

The STATUS flags are used to control conditional execution. Normally, an application
executes “linearly” through its instructions. At specific points in the code, jumps or gotos
to different locations might be warranted. Changes in execution that always take place are
known as unconditional jumps. The STATUS flags (as well as other bits accessible by the
processor) can be used to change execution “conditionally.”

In most processors, the conditional jump instructions test the state of a STATUS flag
and execute the jump if the condition is true. Table 38 lists the standard conditional jump
instructions available to a processor, along with their opposites or complements.

TABLE 38 Different Conditional Jumps available in Assembly Language

Programming
CONDITIONAL JUMP OPPOSITE DESCRIPTION
iz jnz Jump if the Zero Flag is Set.
jnz jz Jump if the Zero Flag is Reset.
ic jnc Jump if the Carry Flag is Set.
jnc ic Jump if the Carry Flag is Reset
jdc jndc Jump if the Digit Carry Flag is Set.
jndc jdc Jump if the Digit Carry Flag is Reset.

92

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

I include the opposites because, when converting high-level statements into assembly
language, the opposite is actually needed for the execution. For example, to write:

if (A == B) {
// Statements
}

in assembly language, a Jump on Zero is not used, instead the opposite, Jump on Not Zero,
is used:

MovAcc A // “if (A == B) {”
SubAcc B /] “if (A == B) {~
Jnz Skip /] “if (A == B) {”
// Statements
Skip: VA

In some processors, like the PICmicro® MCU, there are no jump on condition instruc-
tions. Instead there are skip the next instruction on condition instructions. These instruc-
tions will skip over the next instruction if the condition is true. Normally, a skip the next
instruction on condition instruction is followed by a jump or goto instruction, which sim-
ulates the jump on condition. These instructions can be confusing to work with if you are
used to jump on condition because instead of executing based on the negative condition,
the skip will execute based on the actual condition. To illustrate this, the previous exam-
ple can be re-written using skip the next instruction on condition as:

MovAcc A /] “if (A == B) {”
SubAcc B // *“if (A == B) {”
SkipZ // *if (A == B) {” -Skip on Zero
Goto Skip /] *if (A== B) {”
// Statements
Skip: /A

The skip on condition might seem like a less efficient way to implement instructions.
But they provide a great deal of flexibility that is demonstrated in the book.

Along with jumps to new locations in an application, subroutines can usually be
“called” in most processors. In some cases, instead of pushing the return address onto a
stack, it is stored in a register and when it is time to return from the subroutine, execution
jumps to the contents of the register.

Although calling and operation of subroutines is quite straightforward, I do want to
mention how parameters are passed between the calling code and the subroutine.

Three basic methods are used to pass parameters. The first is passing the parameters in
the processor’s registers. This usually results in the fastest code execution and fewest over-
head instructions. The second method is to use common variables, which are accessible by
both the caller and subroutine. This method can be confusing to write if there are numer-
ous subroutines. The last method is to pass data on the processor’s data stack. For many
processors, like the low-end and mid-range PICmicro® MCU, this method can be very in-
efficient in terms of memory and instructions. In others (such as the PC’s 8088 or the
PIC18Cxx), special instructions and addressing modes makes using the stack for parame-

INTRODUCTION TO PROGRAMMING

93

ter passing extremely efficient. Determining the best method to pass parameters is a func-
tion of how much variable memory, program memory, and instruction cycles you can spend
on the task. When you begin assembly-language programming, you will be faced with the
task of converting complex statements like:

A=B+ (C* D)

which will seem daunting to code at first. My recommendation for this situation is to break
down the statement into single assignment expressions ordered in terms of execution
priority and convert each one to assembly-language. For this example, this conversion
would be:

Both of these statements are relatively easy to code.
An immediate “optimization” that you might see is to avoid using a Temp variable and
save everything in 4, so the two statements look like:

A
A

c*D
B+ A

When you start out, I would recommend that you avoid using the destination as a tem-
porary value until you are very familiar with assembly-language programming. Not hav-
ing intermediate values will make your code harder to debug (if the wrong result is
produced, you can check the intermediate values, rather than go through each instruction
to find the problem). As well, in some registers in the PICmicro® MCU, where a periph-
eral hardware register is the final destination, problems can occur with the peripheral’s op-
eration if the intermediate value is passed before the final result.

This section introduces a lot of material in just a few pages and I hope it isn’t over-
whelming you. I have tried to keep this material general, with pointers to both the concepts
presented earlier in the book, as well as specific points for the PICmicro® MCU. The pur-
pose in doing this is to give you a bridge between other books that introduce assembly-
language programming and use processors other than the PICmicro® MCU.

If you are feeling unsure about your ability to learn assembly-language programming,
take heart in the knowledge that most of it is based on memorization. Once you understand
the basic programming concepts and the processor architecture you are working with, you
will find that developing assembly-language applications will largely consist of “cutting
and pasting” pieces of code that you know together. I find that when I’m not sure of how
to do something, by checking references (such as this book) and other people’s applica-
tions (which are plentiful for the PICmicro® MCU on the Internet), I can usually develop
an application very quickly and quite efficiently.

Interrupts

Developing interrupt handlers and understanding when interrupts should be used is one of
the most intimidating things that new application developers will encounter as they work
through their first applications. Interrupts are perceived as tools, which will make the re-

94

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

sponse of a device to a hardware event not only faster, but also much more complex. This
is incorrect as interrupts are not only very easy to add to an application, but they will often
also make the application much simpler as well.

As presented elsewhere in the book, interrupts are hardware requests to stop executing
the current code, “handle” the hardware request, and resume executing where the code
stopped to respond to the interrupt handler. This execution sequence is shown in Fig. 18.

When the interrupt handler is called, it must save all the “context” registers used by the
processor. These registers include the accumulator, STATUS register, INDEX register,
and any others that are used and change during the execution of the interrupt handler,
which could conceivably affect the operation of the processor and the application. For
programmers working with interrupts for the first time, I recommend that all possible reg-
isters are saved to avoid any potential problems.

One of the biggest mistakes made by developers creating their first interrupt handlers is to
not restore the same registers that were saved or they are restored in a different order in which
they were saved. The latter problem is not a specific PICmicro® MCU problem, but can be a
big problem for devices, which use push and pop instructions to save the context registers.

To avoid this problem, I usually first write the context save and context restore code be-
fore the interrupt handler itself. It is my goal to be always able to see the two operations on
the same editor window. I normally put in the code as:

Interrupt Handler() { // Interrupt Handler Operation

Push(Accumulator);
Push(Status Register);
Push(Index Register);

// {HHHF -Put interrupt handler code here.

Pop(Index Register);
Pop(Status Register);
Pop(Accumulator);

} // Return from Interrupt.

Interrupt
Handler
Execution
Execution Jump Exgcu?ion
to Interrupt Mainline
Handler f__—‘___:D Return
Mainline Mainline
Code Code Execution
Execution Resume
==V

(:Yﬁérdware

Interrupt Request
Received

Figure 18 Interrupt execution

INTRODUCTION TO PROGRAMMING

95

By “building” the interrupt handler this way, I can see the order in which the instruc-
tions are saved and then be sure that I restore them in the opposite order so that the stack
isn’t a problem.

Another aspect to note about this code is my use of the #### character string as a “to do”
marker. For large applications, which have thousands of lines of source code, it can be
hard to find a specific line that is waiting for me to update. By placing #### I am marking
a place where I have to update. Other strings that can be used are $$$3 and %%:%%. The
important feature about these strings is that they are not used in any programming lan-
guage or environment that I am aware of and will cause an error if an assembler or com-
piler encounters them.

If I don’t lead the #### string with a comment, then when I attempt to assemble or com-
pile the code, I will get an error. This is useful when the string indicates where code that
has yet to be written for the application is located.

With the context registers saved, I will next set them to the appropriate values needed
for the interrupt handler to run properly. In the PICmicro® MCU, this is often done dur-
ing the context register save operation.

Once the context registers are saved, then I handle the interrupt in three steps, which are:

1 Save the interrupt occurrence.
2 Reset the interrupt STATUS registers.
3 Handle the interrupt.

This might seem like a surprising order, but it is used to handle nested interrupts, as well
as interrupts that can come in faster than the interrupt handler can process. The goal of this
sequence is to record the operation of the interrupt and reset the hardware as quickly as
possible to prevent the opportunity for an interrupt request to be “missed.”

Saving the interrupt occurrence consists of saving the data relevant to the interrupt re-
quest. An example of this would be saving the byte received by the serial port. This oc-
currence data should be saved in a First In, First Out (FIFO) “queue” to ensure that the
data isn’t lost.

Resetting the interrupt STATUS flags consists of returning the interrupt request hard-
ware into the state in which interrupts can be requested again. This is normally accom-
plished by first resetting the requesting hardware, followed by the computer system’s
interrupt controller.

Once the interrupt request is processed and reset, the interrupt data can be processed. If
the nested interrupts are to be used in the application, they can be allowed at this point.
Nested interrupts are interrupts that can execute while the current interrupt is being
processed (Fig. 19).

With the rules and order presented in this section, you should be able to work with
nested interrupts without any problems. To help ensure there aren’t any problems, keep the
interrupt processing as short and as fast as possible.

A good rule is to keep interrupt handling as short as possible. Long interrupt-handler
processing can result in missed interrupts or unacceptably long delays in passing data to
process (resulting in missed “acknowledgement windows”) in the application. Often, the
ideal data size for processing data is one byte, which means that fast interrupt handler op-
eration and response is crucial to avoid missed data.

96

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

Nested
Interrupt Handler

Interrupt
Handler

D

Mainline
Code
Execution Figure 19 Nested interrupt

execution

Fuzzy Logic

If you’ve ever taken (or suffered through) a course in control theory, you probably re-
member how difficult it was to understand what was happening and how “unnatural” it
seemed. (I was never really able to visualize what exactly what was going on with the
imaginary polar drawings). A more modern solution to controlling processes is to use a
digital signal processor to implement the digital-control theory algorithms. This solution is
as bad as trying to understand classic control theory and requires a lot of effort on the part
of the person designing the system to come up with a correct response algorithm. Visual-
izing a problem or a situation is very important for humans to be able to understanding what
is happening and enables us to come up with a solution. Traditional control theory taught
in third and fourth years of college Electrical Engineering only offers very mathematically
intensive solutions to the problem that are very hard to visualize and work through.

One interesting nontraditional method of controlling systems is known as fuzzy logic.
Fuzzy logic can be considered a superset of Boolean logic, where values between / and 0
are input into the system and a nonbinary results are output.

The input values are manipulated in a manner similar to Boolean logic. Most people
consider fuzzy logic to be a recent invention, but fuzzy logic was first described in 1965,
35 years ago as I am writing this! The main reason for fuzzy logic seeming to be very new
is the almost total disdain shown for it in North America. In Asia (especially Japan), fuzzy
logic has become an important technology used in many applications, ranging from
air-conditioner thermostats to determining when and how much to feed infants.

Professor Lofti Zadeh of UC Berkeley, inventor of fuzzy logic, defined the following
characteristics of fuzzy systems:

1 In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning.

2 In fuzzy logic, everything is a matter of degree.

3 Any logical system can be “fuzzified.”

4 In fuzzy logic, knowledge is interpreted as a collection of elastic or equivalently fuzzy
constraints on a collection of variables.

5 Inference is viewed as a process of propagation of elastic constraints.

To explain how to define a fuzzy-logic system, I will use the classic control system ex-
ample of the inverted pendulum. The mechanical system is shown in Fig. 20.

INTRODUCTION TO PROGRAMMING 97

O ~——Weight

Hinge
H— g

Figure 20 Inverted pendulum

The purpose of this exercise is to keep the weight at the end of the pendulum vertical by
moving the truck back and forth, using inertia to keep the weight upright. If you’re not famil-
iar with this example, take a pencil and balance it vertically with the point down on one of your
fingers. See how long you can keep it upright (the best I could do was about five seconds).

In developing a fuzzy control system, you must first “fuzzify” the system. This is done
by specifying different output conditions based on different inputs.

In this example, the output is the speed and direction of the truck. The inputs are the an-
gle of the pendulum, its angular velocity and the position of the track.

A fuzzy set is defined for each input that is a collection of patches defining different
conditions. One of the parameters that I wanted for my system was to keep the truck in the
center of the system (so that it could react to changes in the pendulum without running out
of track to respond with). So, I defined the position as five different patches defining
whether the truck was at the “Center,” “Near,” or “Far” away. The patches should cover
every part of the base variable (X-axis). A sample set of patches to define the truck posi-
tion is shown in Fig. 21.

This effort is to be repeated for the angle of the pendulum, as well as its angular velocity.

Once the inputs are fuzzified, a set of rules are developed governing the behavior of the
outputs from different input conditions. These rules specify for given conditions, what is
the output response. As can be seen in the diagram, the position could be in both the “Cen-
ter” and “Near,” which means that multiple rules could be valid for a given condition. This
might seem unusual, but in fuzzy systems, this is normal. Multiple rule intersection helps
define what the response should be.

Some rules for this system could be:

if Angle = Vertical AND Angular_Speed = Stopped AND Pos = Center
then Speed = 0

if Angle = -Lean AND Angular_Speed = -Slow AND Pos = Center
then Speed = -Slow

Center
Near
- - —-= Far

-—— = 1

0 Position Figure 21 Fuzzy position

98

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

-104

0 Figure 22 Fuzzy
Angle angle

and so on for each different case. This can be defined several different ways (such as
if-then, as shown, or using a modified Karnaugh map).

With the rules in place, the inputs are run through them. If we were to look at the sec-
ond rule, we might have a negative angle that maps out to what is shown in Fig. 22.

This angle returns a fuzzy value of 0.4. Now, to use this with the other fuzzy operations
in rule number 2, we are ANDing this value with the Angular_Speed and the Pos to get a
final result. In fuzzy Boolean operations, the mapped value (0.4 for the angle, in this ex-
ample) is compared to the other mapped values and the lowest value is passed along.

ORing and NOTing can be done as well. For ORing, the maximum mapped value is
passed along. For NOTing, the current value is subtracted from 1. All Boolean transfor-
mations and laws (i.e., associativity) apply to fuzzy logic, so the result can be computed
easily.

This value is then used to create a weighting for the output value. This weighting is im-
portant because if multiple rules are satisfied, the output of each are combined and a final
output is produced.

These different outputs are weighted together to get the actual output response. In the
inverted pendulum example, the following diagram shows what happens when two rules
are satisfied and two weighted outputs are combined (Fig. 23).

The output could be anywhere in the shaded area, but a center of mass is taken and used
as the actual output. This response is balanced between the output of the two rules by tak-
ing the center of mass of both the responses.

This is really all there is to fuzzy logic. I realize that explaining a fuzzy control system
with one example and one condition doesn’t really explain how it works. But, it is a lot

Speed

1
Center

of Mass Figure 23 Fuzzy result

INTRODUCTION TO PROGRAMMING

929

simpler than explaining how classic or digital control systems operate (which would prob-
ably take up the whole book and maybe one or two volumes).

Elsewhere, the book shows how two example control applications work with Mi-
crochip’s “fuzzyTECH” fuzzy logic development system. This system makes the devel-
opment of fuzzy-logic control systems quite painless and allows you to monitor the
operation of the system before you “burn” it into a PICmicro® MCU.

Event-Driven Programming

So far, this appendix has described linear programming. This method of programming re-
volves around testing and responding immediately to different inputs as the application ex-
ecutes. This technique is typified in the simple application code:

main ()

{

int i = 0;

while (1 == 1) {

output (i & 0x00F); // Qutput Counter
i=1+1; // Increment Counter
if ((1 % 2) ==10) // Delay According to whether or not
delay(1/2sec); // the Counter is 0dd or Even
else

delay(lsec);
} // Loop Forever
} // end Example

In this code, the application runs loops, each of which outputs the current counter i value
before incrementing the counter and then delaying based on the counter value. This
method of programming works well when there is only one task for a processor to perform
for an application.

If multiple tasks that respond to multiple inputs are required, then some form of nonlin-
ear programming is required. Nonlinear programming is the term used to program appli-
cations in such a way that execution is not limited to following a predetermined “linear”
path. Instead, execution is based on responding to current input conditions. There are a
number of approaches to take with nonlinear programming. This section and the next de-
scribe two of the most popular techniques. The body of the book presents a real-time
operating system and multi-tasking as another method to provide responses to external
stimulus without having to follow a linear path.

One irony about nonlinear programming that is important to realize is that although it is con-
sidered to be an advanced programming topic and can be difficult to learn, the purpose is to
simplify application programming. Nonlinear programming allows the application developer
to write complex applications without having to develop methods of allowing the different I /O
to interact. In each of the different methods of nonlinear programming described in this book,
applications are written from the perspective of responding to individual inputs, without hav-
ing to take into account how other inputs are handled or what is happening in the other tasks.

The first description of nonlinear programming is event-driven programming. In this
style of application development, execution lies dormant until inputs are present to be re-

100

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

sponded to. These events can be timer overflows, button presses, incoming serial data, or
anything else that comes in asynchronously (i.e., not on a defined schedule). If you are fa-
miliar with Microsoft’s Visual Basic, you will realize that this method was used to develop
Microsoft Windows applications.

If you are to look at a true event-driven program, you would find that the “mainline”
would consist of:

main() // Event Driven Programming Example
{

// Initialize Variables and Hardware
// Set up Real Time Clock
// Set up Interrupt Handlers

while (1 == 1); // loop forever
// and let Interrupt Handlers respond and
// process the inputs
}// End Event Driven Mainline

interrupt EventlHandler()
{

// Handle Event *“1”
}// End EventlHandler

interrupt Event2Handler()
{

// Handle Event *“2”
}// End Event2Handler
// Additional Event Handlers

Once execution is taking place, the processor is “spinning,” waiting for events to re-
spond to. These events are normally interrupt requests that have to be acknowledged and
the incoming data responded to.

The example application presented at the start of this section could be enhanced by
adding a one-second timer interrupt to the main line and a timer interrupt handler:

main() // Event Driven Updated Initial Application
{

int i = 0;
TimerDelay = lsec;
interrupts = TimerHandler;
while(l == 1);
b // end main
interrupt TimerHandler(){ // Display “i” and Increment
TimerInterrupt = Reset;
output(i & 0x00F);
i=1+ 1;

} // End TimerHandler

INTRODUCTION TO PROGRAMMING

101

This code probably doesn’t look any simpler than the first example, but the advantages
become apparent when more event handlers are added. To show this, I will add the code to
turn on and off an LED based on the state of a button.

main() // Event Driven Updated Initial Application
{

int i =0;
TimerDelay = lsec;
interrupts = TimerHandler | ButtonHandler;

if (Button == Up) // Load in the Initial Button State
LED = off;

else
LED = ON;

while(l == 1);

} // end main

interrupt TimerHandler() { // Display “i” and Increment
TimerInterrupt = Reset;
output(i & 0x00F);
=1+ 1;

} // End TimerHandler

interrupt ButtonUp()

{
ButtonInterrupt = Reset;
LED = off;

} // end ButtonUp

interrupt ButtonDown()

{
ButtonInterrupt = Reset;

LED = ON;
} // end ButtonDown

Notice that to add the button interrupt functions, the timer delay code was not affected.
Looking back at the original application code, I would have to figure out how would these
button routines are to be added. Before that decision could be made, I would have had to
look at how the delay(1sec) subroutine worked and how it could be changed to accommo-
date the button polling LED on/off function.

Using event-driven programming techniques, the button functions are simply added
without affecting the operation of the code that was written around it and are not part of
the functions. This feature allows multiple functions to be created for an application by
different people using different hardware.

The key to event-driven programming is to design the application so that multiple
events can be handled without being “stacked” and ultimately lost. This is actually quite
easy to do, but some time must be spent when the application is designed. The ideal is to

102

PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

design an event-driven programmed application in such a way that it can always respond
in less than half of two times the worst-case time that can be tolerated.

State Machines

Creating state machines in software is another technique of nonlinear programming that
you can use for your applications to avoid having complex operation comparisons and so-
phisticated decision code. Software state machines can be implemented in a variety of dif-
ferent ways, depending on the requirements and capabilities of the application. This
section introduces programming state machines for the PICmicro® MCU.

State machines were first designed as hardware circuits that perform sequential,
decision-based operations without any logic circuits built in (Fig. 24). The current state is
the address produced by combining the previous state and the external inputs of the cir-
cuit.

Software state machines work in a similar manner with a “state variable” used to select
the operation to execute. The most common way to describe a state machine is to use a se-
lect statement to show how the different states are selected and what happens in them. For
a simple “traffic-light” state machine application, the code could be shown as:

main() // Traffic Light State Machine
{
int State = 0; // Start State at the Beginning
while(l == 1) // Loop forever
switch(State) { // Execute according to the State
case 0: // Power Up - A1l Red Before Starting
NSLight = Red; // North/South Switch Red
EWLight = Red; // East/West Switch Red

Dlay(20 Seconds); // Wait for Traffic to Stop Before
// Proceeding

State = 1; // Jump to the Next State
break;
case 1: // Make North/South “Green”
NSLight = Green;
EWLight = Red;
Dlay(30 Seconds); // Active for Thirty Seconds
State = 2;
break;
case 2: // North/South “Amber”
NSLight = Amber;
Dlay(10 Seconds); // Cars have Ten Seconds to Stop
State = 3;
break;
External Read-
Inputs]ﬂ Only > State
Output
Adder/ Memory Figure 24 Hardware
Combiner state-machine

Current Memory State/Address implementation

INTRODUCTION TO PROGRAMMING 103

case 3: // North/South Red, East/West Green
NSLight = Red;

EWLight = Green;

Dlay(30 Seconds); // Active for Thirty Seconds
State = 4;

break;

case 4: // East/West *“Amber”

EWLight = Amber;

Dlay(10 Seconds); // Cars have Ten Seconds to Stop
State = 1; // Start all over again

break;

} // End Switch
} // End Traffic Light State Machine

In this example, delays are put into each state. Also notice that I don’t set both light val-
ues in every case. This might not be recommended based on the actual hardware. In this
application, I assumed that once a value was set, it would stay set and the processor would
not jump to an invalid location.

Another assumption I made was that programmable delays could be called from the
mainline. In a PICmicro® MCU application, the state machine might be active every time
that TMRO overflows. In this case, if the overflow occurs at a constant time (e.g., 10 sec-
onds), multiple delay executions for each state are required. In this case, the example ap-
plication shown changes to:

main() // Traffic Light State Machine
{ // — with a 10 Second Constant Delay
int State = 0; // Start State at the Beginning
while(l == 1) { // Loop forever
Dlayl0 Seconds(); // Delay Ten Seconds
switch(State) { // Execute according to the State
case 0: // Power Up - All Red Before Starting
NSLight = Red; // North/South Switch Red
EWLight = Red; // East/West Switch Red
State = 1; // Jump to the Next State
break;
case 1: // Want 2x Red Light Delay
State = 2; // for Twenty Seconds
case 2: // Make North/South *“Green”
NSLight = Green; // for Thirty Seconds
EWLight = Red;
State = 3
break;
case 3: // North/South Green for 20 seconds
State = 4
break;
case 4: // North/South Green for 30 seconds
State = 5
break;
case b: // North/South “Amber”
NSLight = Amber; // for 10 seconds
State = 6;
break;
case 6: // North/South Red, East/West Green
NSLight = Red; // for 30 seconds
EWLight = Green;
State = 7

break;

104 PROGRAMMING & CUSTOMIZING THE PICmicro® MICROCONTROLLERS

case 7: // East/West Green for 20 Seconds
State = 8;
break;

case 8: // East/West Green for 30 Seconds
State = 9;
break;

case 9: // East/West “Amber”
EWLight = Amber; // for 10 Seconds
State = 2; // Start all over again

break;
} // End Switch
}// End While

} // End Traffic Light State Machine
{#HHHF - End Code Example}

Notice that, in this case, the reset value has changed from state 1 to state 2 because two
10-second delays are required for the 20-second settling time to get the traffic to a known
condition (stopped) before starting the process. When the green lights are on for 30 sec-
onds, you can see that three states are encompassed to provide the delay.

This is actually the method that I use when developing Visual Basic state machines. In
this case, I use one of the programmable timers to initiate the state machine and then work
from there. This method is directly transferable to implementing state machines in the
PICmicro® MCU’s timer interrupt or responding to changes in inputs while in an infinite
loop.

